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SECTION 1

INTRODUCTION

This report presents the result of a one-year effort sponsored by the

NASA Langley Research Center under contract NASI-18004 to design and evaluate

a Failure Detection and Isolation (FDI) algorithm for application to restruc-

turable flight control. The restructurable or reconfigurable flight control

system (RFCS) concept is a fault tolerant control concept which is capable of

automatically generating the control action needed for recovery from unantici-

pated emergencies as well as providing the stability and control augmentation

for controllable flight under these circumstances. Under NASA sponsorship,

ALPHATECH, Inc., has been developing and testing many component technologies

which will be necessary for near term demonstration and operational develop-

ment of the RFCS concept. Currently, the FDI system developed for this con-

tract is being integrated with other RFCS components for demonstration on

NASA's modified B-737 simulation, (see [I] - [4] for a general discussion of

the RFCS concept).

The FDI function is a critical component to the RFCS concept because

there will always be conditions which can not be handled by a normal (i.e.,

any acceptable normal) control system, (which, of course, includes the pilot).

Those failures which can not be so handled must be detected so that tile RFCS

knows when to reconflgure,and these failures must be isolated or identified so

that the proper reconfiguration action is taken. Although there are a variety
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of failures which may be important, those which result in a loss of control

authority are most important since they not only result in emergency condi-

tions, but also impact how well one can reliably respond to such conditions.

This effort concentrated on the development of an FDI system to handle al____l

such failures. These failures are known generically as control element fail-

ures and include (though are not limited to) runaway, stuck, floating, and

partlally mlssing surfaces, as well as engine failures such as loss of thrust

and stuck throttle failure modes.

This project was divided into four major tasks. Task 1 addressed the

issue of fundamental limits to FDI performance for the decentralized FDI

approach previously developed by ALPHATECH, Inc. Task 2 was a preliminary

design effort which utilized ALPHATECH's design methodology and a preliminary

assessment of errors. Task 3 was an algorithm refinement phase which utilized

simulation results to provide better estimates of errors for use in the design

methodology, and Task 4 was an assessment of critical issues for further

development. The availability of flight recorded data from flights of NASA's

transportation systems research vehicle (TSRV) and NASA's modified simulation

for that aircraft motivated our application to the B-737 aircraft. The flight

recorded data also provided a unique opportunity for realistic evaluation of

performance limitations in Task I.

I.i CONTRIBUTIONS

The detection and isolation of _eneric control element failures has

received significant attention (e.g., see [5] - [13]) not only due to its

importance for RFCS but also because of the difficulties associated with the

need to use analytical redundancy in the solution method. Analytical

2
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redundancy (unlike direct or hardware redundancy) refers to the concept of

comparing dissimilar sensors using analytical or mathematical relationships

between those sensors. Analytical redundancy is necessary for many control

element failure modes because direct redundancy or built-in test equipment

(BITE) is not available (consider a partially missing surface, for example).

Furthermore, those control element failures which might also be amenable to

direct redundancy and/or BITE (e.g., a stuck surface due to a loss of hydrau-

lic pressure) can sometimes be handled more efficiently using analytical

redundancy. This is because BITE, by definition, tests only the "precondi-

tions" whlch are necessary for system operation (e.g., power applied). Ana-

lytical redundancy, however, tests the functionality of a particular system,

thereby encompassing all modes of failures. Furthermore, it does this without

hardware duplication, thereby reduclng initial cost and weight and increasing

overall system reliability and maintainability (fewer pieces of hardware to

fail) as well.

Unfortunately, the design of FDI systems using analytical redundancy is

difficult because of the sometimes significant inaccuracies associated with

the mathematical models which are employed. This fact provided the motivation

for ALPHATECH's development of an FDI design methodology which addresses the

impact of such errors. One major contribution of this effort was the refine-

ment and application of this design methodology for the control element FDI

problem. This methodology consists of methods for choosing the structure of

an FDI algorithm, optimizing its parameters in the presence of unavoidable

modeling errors, and performing sensitivity analyses. It is largely based on

the notion of discrimination metrics which can be used to bound, on an average

basis, the decision errors associated with an FDI process. Such analyses
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require a statistical model of system behavior which includes a wide variety

of modeling errors (including parametric errors, unmodeled dynamics, nonline-

arities, etc.). A qualitative analysis and several "error budgets" are used

to derive these descriptions.

The other major contribution is the development and demonstration of an

FDI system for detecting and isolating al____limportant control element failure

modes. This system is an advance over systems which only handle a limited

class of failure modes (e.g., [51]). The key element in developing such a

system is the recognition that the failures which are important are those

which result in "large" failure signatures (as later defined in this report)

but that different failure modes give rise to different temporal signature

characteristics which are unknown a priori. The FDI system developed for this

project uses only qualitative information about failure signatures (we assume

they are coherent, although this is not a requirement for the design) and

detects and isolates failures using only failure "size" information.

The general FDI concept used in this project is known as a decentralized

approach because of our attempt to assess system redundancy and utilize only

the most well-known parts of the system for specific FDI tasks. This is in

contrast to centralized methods which integrate all information in an "opti-

mal" manner. Such methods work well in ideal circumstances but frequently run

into trouble when model error exists. The loss of optimality under ideal cir-

cumstances, which results from using the decentralized approach, is more than

compensated by the increase in robustness to modeling errors. The first

decentralization employed in this project is the decomposition of the control

element FDI problem into two separate subproblems; actuator-path FDI and

aircraft-path FDI. The actuator path problem is a "local" FDI problem which

4
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is concerne_ only with failures which occur between the location of (total)

actuator command measurements (e.g., in the flight control computer) and the

location of actuator output measurements (e.g., on a control rod). The air-

craft path problem is concerned with all failures which occur outboard of the

actuator output measurement. Two decoupled subsystems were designed to handle

each of these subproblems (see Section 2). The actuator path subsystem con-

sists of decoupled actuator path systems (one for each actuator) which make

use of actuation models. It can handle any combination of sequential or

simultaneous actuator path failures. The aircraft path subsystem utilizes

models which relate aircraft motion to the measured control values and can

only handle single failures. The ability to handle multiple aircraft path

failures depends on knowledge of failure signatures which is not available

without explicit control excitation (e.g., dither signals). Such an approach

was not considered in this work.

1.2 OUTLINE OF THIS REPORT

Section 2 formulates the overall control element FDI problem in terms of

the failure modes of interest, the goals and assumptions used for FDI design

and the various configuration options available for handling the actuator-path

and aircraft-path subproblems. Section 3 describes the decentralized approach

to FDI and includes a variety of examples of how decentralized "residuals" can

be generated and provides a decision structure which takes maximal advantage

of these residuals. A design methodology for this structure is presented and

many examples of hypothesis test designs which will be useful for the control

element FDI problem are given. Section 4 presents a method for evaluating

fundamental limits to FDI performance using discrimination metrics and solves
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an example Which is used in Section 5. Section 5 applies the concepts devel-

oped in Sections 3 and 4 to the B-737 aircraft and goes through design and

analysis details and simulation results for both actuator-path and aircraft-

path subsystems. Conclusions and recomendations are given in Section 6.
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SECTION 2

PROBLEM FORMULATION

The broad goal of this project is to develop a system for detecting the

occurrence of any control element failure (to be defined) and isolating or

identifying the affected control. Major failures should be detected quickly

so that appropriate reconfiguratlon can take place, but false alarms must also

be minimized.

We will assume single flight condition operation, full measurement of the

rigid body state vector (e.g., measurements of body referenced angular rates

and relative wind, as well as body referenced accelerometer measurements), and

models (not necessarily linear models) of the aircraft and actuator. Sensor

errors including noise, scale factor and bias (within some design specifica-

tion) and model errors including parameter errors and unmodeled dynamics (also

within some design spec.) must be accounted for in the design process.

The motion of the aircraft in response to control action under any opera-

tional status (failed or unfailed) is now assumed to be representable by a set

of differential equations, viz.

= f(x, 6E) (2-1a)

y = h(x, dE) (2-1b)

where x is some n-dimensional state vector that includes the effects of flexi-

ble modes and disturbances due to turbulence, in addition to the rigid body
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states which describe body referenced motion of the aircraft through the

atmosphere; 6E is a vector of "effective" control values; and y is the vector

of measurable quantities. Equation 2-1 is true independent of the aircraft's

operational status.

Control element failures are now construed to mean: &E does not

"follow" the desired control commands. That is, each of the, m_ effective

controls, 6Ei, is derived from an independent set of differential equations

which do depend on the status of the aircraft (failed or not failed). These

equations written in operator form are

6Ei = gEi{6A i} + dEi (2-2)

6Ai = gAi{6c i} + dA i (2-3)

where 6c represents the control commands being input to the actuation mechan-

ism, 6A represents the output of the actuation mechanism, gA i and gEi are

causal operators, and dE and dA are time varying "disturbance" functions.

under no-failure conditions Eqs. 2-2 and 2-3 reduce to,

6Ei = 6Ai (2-4)

6Ai = gOA i{6c i}

for all i, where gOAi is a model of a working actuation mechanism.

(2-5)

*The definition of each actuator's input and output (_c and _A ) is not unique.

For control surfaces, inputs include DFCS outputs, electrical signals between

a DFCS and an actuator, and differential pressure in a hydraulic actuator.

Outputs could be taken at the actuator output, on a control rod, or at the

surface hinge. For this project we have assumed that measurements of 6A and

_c are available. Therefore, we can define each actuator's input and output

by the location of the corresponding measurements.

8
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Equations 2-2 and 2-3 are sufficient for describing all types of control

element failures. These failures are decomposed into two categories.

"Actuator-path" failures are those failures in which Eq. 2-3 differs from Eq.

2-5 and "alrcraft-path" failures are those in which Eq. 2-2 is different from

Eq. 2-4. Tables 2-1 and 2-2 describe a variety of control element failure

models in terms of Eqs. 2-2 and 2-3. Failure mechanisms which result in

behavior characterized by each of the models in Table 2-1 can be conceived.

In general, models and mechanisms depend on the exact locations of actuator

input and output measurements.

TABLE 2-I. ACTUATOR PATH FAILURES

Stuck

Floating

Runaway

Reduced Bandwidth

gA(6) = 0

gA(6) = 0

gA(6) = 0

gA(6) = gAF(6)

dA = Constant

dA = Follows local

dA = Slews to limit

dA = 0

TABLE 2-2. AIRCRAFT PATH FAILURES

Stuck

Floating

Runaway

Partial Loss (A)

(B)

gE(6) = 0

gE(6) = 0

gE(_) -- 0

gE(_) = k-_

gE(6) = k-6

(k = 1 - fraction-lossed)

dE = Constant

dE = Follows local a

dE = Slews to limit

dE = 0

dE = Follows local

9
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The availability of actuation input and output measurements has an impact

on the configuration of decentralized FDI systems. A centralized system would

simply combine the actuation models with the aircraft state equation in Eq.

2-1 and add the output measurements to the observation vector. In the decen-

tralized approach, an assessment of the "redundancy" available from each part

of the model is made and possible system decompositions (which utilize only

subsets of models) are explored. Actuation output measurements allow consid-

eration of separate actuator and aircraft-path subsystems as described below.

Figure 2-I describes the information flow which is available for FDI for

some measurement configuration. Several parallel actuator paths are shown.

Failures in each actuator can be independently detected through the use of the

analytical redundancy which is embedded in the independent actuator models.

That is, actuator-path failures can be detected by comparing a predicted actu-

ator output (based on the measured input and an actuator model) with the mea-

sured output.

COMMAND

CONTROLS

I "SENSORS"

l

1 I ACTUATOR I J

I IH OUTPUTS J AIRCRAFT I : _"-- AIRCRAFT

(_E - STATES
/ACTUATORS

l SENS SENSORS

(_m Xm

CONTROL

MEASUREMENTS

ACTUATOR - PATHS AIRCRAFT - PATH

Fig. 2-1. Measurement Configuration and Analytic Redundancy Implications

I0
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When an effective control value (i.e., the control value which actually

moves the airplane) differs from the measured output of the actuator, then an

aircraft-path failure exists. These failures can be detected by the use of

the analytical redundancy which is embedded in an aircraft model. That is,

aircraft-path failures can be detected by comparing the measured motion varia-

bles (which are a function of the aircraft states) with a prediction of these

variables based on the control measurements.

Clearly, from the figure, all control element failures (both actuator-

path and aircraft-path) could be detected using an aircraft model that

includes the actuator models thereby eliminating the need for actuator output

measurements and reducing the cost and weight associated with the sensor hard-

ware and redundancy management. Furthermore, such a system results in an FDI

algorithm which is based on sensors which are more likely to survive potential

causes of failures (e.g., battle damage, sabotage, etc.).

On the other hand, the parallel actuator path FDI algorithms tend to be

very simple and more reliable than the aircraft path algorithms. Also, on

most commercial and military aircraft, the cost and weight of establishing

actuator output measurements of some kind would not be prohibitive; (in fact,

any servo driven actuator already has an output measurement, although not nec-

essarily the best one in terms of failure mode coverage). As a result, we

expect that independent actuator path algorithms will be an important part of

control element FDI and have, therefore, considered their development for this

project.

Given the development of an actuator-path FDI system, the next question

is how to cover the remaining aircraft-path failure modes. There are two

options in this regard. The first option is to create a backup system to the
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actuator-path algorithm by incorporating the actuator models in the aircraft

model and using control commands as inputs. This would then cover both

aircraft-path and actuator-path failures. The second option is to utilize the

control measurements for prediction of aircraft motion in the aircraft path

algorithm. Since the latter option requires no ambiguity resolution

(alrcraft-path and actuator-path algorithms cannot disagree) and since this

option may provide a more reliable aircraft-path algorithm (no actuator model

errors), we have developed this second option for this project.

Figure 2-2 shows the resulting high-level structure for the FDI algorithm

being developed. At the top of this figure, actuator models and measurements

are used to compare predicted and measured actuator outputs. This comparison

consists of independent deflection residual signals. When the ith deflection

residual is large, a failure of the ith control element is indicated. The

decision processes for actuator path failures are decoupled and are responsi-

ble for deciding if each residual signal is large because of a failure or

because of model error excitation. In the lower part of the figure, measure-

ments of various aircraft states, along with the measured deflections and an

aircraft model, are used to form residual signals which correspond to the six

forces and moments which define the aircraft motion (details given in Section

5). The aircraft path decision process is then responsible for detecting when

these residuals are larger than expected (accounting for noise and model

error) and for deciding which control element failure is responsible for the

force and moment imbalance indicated by the relative sizes of the six

residuals.
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SECTION 3

A DECENTRALIZED APPROACH TO FDI

In this section we motivate the need for a decentralized approach to the

failure detection and isolation (FDI) problem. The term "decentralized" as

applied to the FDI problem is used to indicate the uncoupled use of parts of a

system model to develop "redundancy relationships," and the selective use of

these relations in the FDI process. This decentralized approach was first

used in the NASA F-8 sensor FDI project, [14] - [16], in order to allow clear

trade-offs between model error and failure sensitivity to be made. Such

trade-offs are the key to successful FDI design for systems which cannot be

precisely described by the kinds of models which form the basis of the many

"optimal" FDI methods, (e.g., see [17]). This is because modeling error

always exists (including parametric errors, unmodelled dynamics, and nonsta-

tionary inputs) and because the optimal methods, which guarantee optimality

under ideal conditions, are typically not "robust."

The success of the F-8 work spawned many research activities into robust

FDI methods. Willsky and his co-workers at MIT, ([18] - [21] first addressed

the residual generation problem in terms of solving for "parity checks" (which

can be interpreted as auto-regressive-moving-average models) which are insen-

sitive to model errors. Pattipati and co-workers at ALPHATECH ([22], [24])

extended these ideas to include the trade-off between model error and detec-

tion sensitivity and provided a unified framework for developing robust FDI

methods. Weiss and co-workers at ALPHATECH, at the same time, developed a
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control element FDI algorithm based on the conceptual framework of the F-8

sensor work, [5]. This algorithm provided a generic structure for robust

decisionmaking and, more importantly, began to address the need for robustness

optimization and sensitivity analysis in the design of decision processes.

These ideas have been extended during this project and are detailed in subsec-

tion 3.3.

3.1 OVERVIEW

Q What is failure detection and isolation (FDI)?

Obviously, FDI deals with the problem of detecting deviations from normal

behavior in specified components (sensors or effectors) and isolating the par-

ticular component which has "failed." The key point in this sentence is that

in order to detect and isolate deviations, one requires a specification or

model of "normal behavior" and of the anomalous behavior to be detected. Fur-

thermore, for each type of anomaly to be detected, these models must provide

sufficient redundant information to allow one to detect each anomaly and to

distinguish it from others. For example, in a triplex sensor system, in which

there are three identical sensors of each type, one can perform voting by

examining each triple to determine if its components are consistent (i.e.,

normal). If one sensor in the triple is significantly different from the

other two, then we could conclude that it has failed. In this scheme, the

model information used is that the three sensors measure the identical quan-

tity, and the model of a deviation can be specified in several ways, such as

in terms of manufacturer's instrument specifications. As a second example,

consider a relatively simple and often-used check in which successive samples

of the output of a particular sensor are examined to determine if there is an

15



ALPHATECH, INC.

obvious inconsistency. Here the model information used is a crude measure of

the bandwidth of the variable being sensed. Finally, consider a simple system

involving linear motion and in which one has a velocity sensor and an

accelerometer. Here the kinematic model v = a provides a mechanism for

obtaining one redundant relationship between these sensors.

In the terminology used by Chow and Willsky [18], [20], the three

examples just described are illustrations of direct (or hardware) redundancy,

temporal (or self-test) redundancy, and analytic (or functional) redundancy,

respectively. While there are clear differences among them, it is their

slmilarities--in terms of being based on models and, more explicitly, on

redundancy imbedded in those models--that we wish to stress. This permits us

to construct a unified framework in which to examine and compose different

approaches to failure detection and their robustness properties.

• What does an FDI algorithm do?

Roughly speaking, all failure detection systems can be described in terms

of the conceptual block diagram of Fig. 3-1. This diagram has been used quite

often (e.g., see [5], [23], [24], [18], [20]) and provides a framework for the

design and analysis of robust FDI systems. In Fig. 3-i, there are two funda-

mental parts of failure detection. The first of these is the generation of

sets of signals (called residuals) whose deviation from "normal behavior"

(typically meaning near zero without significant trends or patterns during no

failure operation) can be used as the basis for detecting and identifying

system failures. The second component of a failure detection system is the

decision process consisting of information collection and decision-logic func-

tions. Here, the residuals that have been generated are processed in order to

make FDI decisions.
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Figure 3-1. General Structure for FDI

A number of issues arises in the design of each of these subsystems, and

to begin our discussion, let us focus first on the residual generation process.

3.1.1 Residual Generation

The way in which residuals can be generated varies greatly. For example,

in a triplex system, if Yl(k), yz(k), and Y3(k) denote the outputs of three

identical sensors, then rl(k) = Yl(k)-Y2(k) and r2(k) = y2(k)-Y3(k) can be

thought of as the residuals used in a voting system. In other FDI methods

which have been suggested (e.g., see surveys [17], [25]), Kalman filters may

be used to generate the residuals. In some of these methods, such as the

detection filter approach [21] and [26], [27] Kalman-like filters are

designed, but with gains chosen in particular ways so as to make particular

failures more readily apparent. The decentralized approach to FDI, which is

the topic of this report, provides a generalization of the residual generation

mechanism employed in the voting scheme described above. In this approach,
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each piece of the system model is examined to determine indivldual relation-

ships among the measured quantities. Residuals can then be generated from

these individual relations.

Now, although the use of Kalman filters for generating residuals may

allow us to bypass the explicit identification of system redundancy, the

absence of a specific assessment of redundancy frequently creates many diffi-

culties when Kalman filter approaches are applied in a "top-down" manner. One

of the reasons for these difficulties is the issue of robustness or model-

error tolerance. By their very nature, good failure detection algorithms

attempt to generate signals that are sensitive to system anomalies (i.e.,

failures). Given that all residual generation mechanisms use models of the

relationships among available (i.e., measured or commanded) signals, we imme-

diately see that the possibility exists for these residuals to be sensitive to

modeling errors as well as to system failures. What is needed, therefore, is

an FDI method with selective sensitivity. That is, an FDI algorithm should be

based on residuals which are maximally sensitive to failures and minimally

sensitive to model errors. It is here that the Kalman filter approaches run

into trouble. All residuals produced by a Kalman filter are produced using a

centralized system model. By definition, therefore, they tend to mix together

relationships that are known very well with those that are far more uncertain.

For this reason centralized approaches that are optimal when models are well

known become far from optimal when model uncertainty is taken into account.

As mentioned above, the term "decentralized," as applied to the generation

of residuals, refers to the identification and extraction of each individual

source of system redundancy which we call a redundancy or parity relation.

Selective sensitivity is achieved by examining each such relationship to
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determine its robustness (or lack thereof) to various possible model errors

and its sensitivity to specific failure modes. The most reliable set of rela-

tions providing the desired coverage (i.e., capable of detecting and identify-

ing a specified set of failures) can then be determined, and separate FDI

tests can ben be designed. Since only the most reliable relationships are

used in each test, the effects of model errors are minimized, and thus the FDI

tests can be implemented reliably. Furthermore, since each redundancy rela-

tion typically involves only small subsets of the set of available signals and

of the set of model parameters, the problem of failure misclassiflcatlon is

minimized, and the effects of particular worst-case model error scenarios can

be easily analyzed in great detail. Finally, since the resulting FDI system

consists of a collection of extremely simple, low-order sub-algorithms, the

overall system becomes easier to implement, verify, troubleshoot (either for

logical errors or to pinpoint weaknesses identified during optimal tests

caused by unanticipated sources of error), and modify.

To summarize, in order to achieve selective sensitivity in an FDI algo-

rithm, we generate residuals in a decentralized manner. Individual relation-

ships between the measurable variables can then be considered in terms of

their sensitivity to specific failure modes and to various sources of model

errors. Only the "best" relationships for detecting and distinguishing indi-

vidual failure modes or subsets of failure modes will then be used in the

hypothesis tests which make up the second part of the FDI structure of Fig.

3-I, the decision process. Details of the various decentralized residual gen-

eration methods are given in subsection 3.2.
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3.1.2 The Decision Process

The decision process accumulates information about the system operation,

performs a variety of hypothesis tests, and combines the results of these

tests into a logical decision about the system status.

The accumulation of information is necessitated by the fact that although

the instantaneous value of a residual derived from any particular parity rela-

tion provides one piece of information about possible failures, typically this

one piece of information is not sufficient for accurate detection and identi-

fication. Rather, the information contained in successive values of the

residual must be accumulated over time in order to achieve acceptable levels

of performance (see [20] for a discussion of the several ways in which infor-

mation can be collected).

The fact that information must be accumulated over time, coupled with the

fact that the failure onset time is unknown, creates a situation which has led

to a variety of failure decision mechanisms. The reason that so many methods

have been proposed stems from the considerable advantage obtained from knowing

or estimating the failure onset time as described below.

UNKNOWN ONSET TIME

The advantage of knowing the failure onset time is easily illustrated

using simple measures of failure distinguishability (see Section 4). Con-

sider, for example, the distinguishability of a constant, nonzero, bias which

occurs at an unknown time ("jump failure") and measurements which are contami-

nated by white Gaussian noise. One commonly used detection approach is to

operate on a sliding window of data and declare a failure when the output of

this operation exceeds a threshold.
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In particular, let y(k) represent the observed signal that obeys

under H0 :

under HI:

y(k) = n(k) for all k < kf, and

y(k) = q(k) for all k • kf

y(k) = m + n(k) for all k • kf (3-t)

Now, if the decision process is defined by applying a maximum likelihood

hypothesis testing technique over the sliding window, a decision statistic,

Sk (the log-likelihood ratio), is formed by,

N-I
m N m 2

Sk = _ -- y(k-j) 2 (3-21

j=0 On2 On2

Since Sk is Gaussian with equal variance under H0 and HI, we can easily

compute the distinguishability metric, or signal-to-noise ratio of Sk, viz.

SNR{Sk_kf } = _ [E {Sk_kf [HI } - E {Sk_kf IH0 }]2/Var [Sk-kf ]

(k-kf) m

N_-- °n
for kf • k 4kf + N (3-3)

for k • kf + N

If the failure onset time were known, however, the maximum likelihood

hypothesis test produces a decision statistic, Rk, from,

k

N 2/ (3-4)Rk = _ m y(j ) - _ m on2

j=kf on2

and hence,
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SNR {Rk_kf } = k_-kf m___
oR

Both SNR{Sk-kf} and B01{Rk_kf} are shown in Fig. 3-2. Notice that for

large values of N, (window size), one would expect considerable improvements

if R k were used instead of Sk for decisionmaking since the failure (bias) is

far more distinguishable (larger BOI) in this case, especially for small k-kf.
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Figure 3-2. Advantage of Known Onset Time

Since, of course, the failure onset time, kf, is unknown, alternative

methods which attempt to realize performance that approaches the level

obtained when the failure onset time is known have been investigated.

DECISION MECHANISMS

Several "optimal" and suboptimal methods for dealing with this issue are

discussed in [17], [25]. The optimal methods, which essentially view each
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sample instant as a potential failure onset hypothesis, are computationally

infeasible, and many of the suboptimal algorithms which are based on these

optimal methods can require extensive computational resources.

In [14] - [16] and more recently in [5], an alternative approach which

avoids these complexities while sacrificing little in performance has met with

considerable success. This approach is shown in Fig. 3-3. In this approach,

a trlgger process produces quick responding alarms on the basis of short,

highly sensitive tests with full coverage of all failure modes. These alarms

are then used to generate somewhat longer running, independent tests for

reliably identifying the failure mode and rejecting any false start. In order

to minimize the decision delay following a failure, each failure mode may have

a separate trigger test. The tests which are initiated by the trigger then

provide the final reliable (i.e., desired level of error probability) failure

decisions. In order to reject a false start from the trigger process, several

"verification" tests are triggered. These tests compare each failure mode

hypothesis, (say Hj), with the no-failure hypothesis (H0). Although any

trigger may initiate the verification process, only those failure modes which

have been verified will be chosen by the decision logic. If all failure modes

are not verified, a false-trigger is declared. In parallel with the verify

tests, several "isolation" tests are used to compare each 2air of failure

hypotheses which are potentially ambiguous following a given set of trigger

alarms. The results of these pair-wise decisions are then combined in the

decision logic to produce failure decisions.

There are several advantages to the decision structure just described.

First, and most important, is that the trigger mechanism effectively provides

an estimate of the failure onset time, kf, as the beginning of the trigger
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Figure 3-3. General Decision Structure

data window. This allows the use of tests based on the assumed failure onset

time to be used for verification and isolation thereby achieving a hlgh degree

of decision reliability over very short tlme intervals. Tests such as the

SPRT (a sequential decision mechanism requiring an assumed onset time) are

typically very effective in realizing these advantages. In particular, these

tests can easily be designed to be robust to unknown failure magnitudes in

that failures which are "larger" than those considered minimal will be

detected and isolated in a shorter period of time.

The second advantage of the decision structure outlined above is that

typically (e.g., see [15], [5]) [6] the computational complexity of this algo-

rithm is substantially smaller than the optimal and sub-optimal methods dis-

cussed in [17]. This is in addition to the expected performance benefits in

terms of FDI robustness.
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Finally, in addition to the computational advantages of the procedure

described above, the partitioning of the failure space into hypothesis pairs

allows us to make use of residuals in a selective way so as to minimize the

decision errors and delays of each test. That is, only those residuals which

provide reliable information about the hypothesis pair being tested are selec-

ted as inputs to that test.

HYPOTHESIS TEST DESIGN

The last i_sue we raise in regard to the design of FDI systems is the

design of the various hypothesis tests which comprise the decision process.

In classical hypothesis testing theory, such tests are completely defined by

specification of the joint probability density function (pdf) of the sequence

of residual signals. Such a characterization, however, is never completely

possible since modeling errors exist, failure severity is unknown and since

the inputs which excite the measurements are non-stationary and not always

completely measurable. Thus, the classical theories can serve only as a start-

ing point in the design procedure; defining a useful algorithm for hypothesis

discrimination. Selection of parameters within this algorithm, however,

requires a performance analysis which incorporates the uncertainties in the

probabilistic description used to define the algorithm.

This process is shown graphically in Fig. 3-4. The figure emphasizes the

fact that two classes of models, truth and design models, are needed; and that

a variety of analysis and synthesis tools need to be developed and used in

this process. For example, algorithm structures (i.e., equations for signal

processing) are typically determined using a simplified design model and

knowledge of various decisionmaking techniques. Of course, implicit knowledge
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Figure 3-4. Hypothesis Test Design Process

of the truth model may also be used to ensure that the subsequent sensitivity

analyses will meet the desired specifications. The truth model is then used

explicitly in choosing the parameters of the decision algorithm. In order to

ensure both maximal performance an___ddrobustness to off-nominal conditions, it

is important that the "truth" model be a statistical model which characterizes

variations in system qualities as much as possible. Finally, where such char-

acterizations are not possible, and where optimal synthesis techniques are not
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available, sensitivities to important variations must be evaluated. Itera-

tions between such an analysis and the choice of algorithm parameters can

occur and, in some cases, iteration on the algorithm structures themselves may

be necessary.

Also shown in Fig. 3-4 is an evaluation of fundamental performance lim-

its. These are really two kinds of limits of interest; one for problem feasi-

bility and one for algorithm design. In the feasibility analysis, one asks

the question How well can a decision mechanism perform under the best (but

reasonable) circumstances? This topic is addressed in [8] and in Section 4

and assumes, for example, that a detailed statistical design model exists and

that this model exactly describes the system behavior. If adequate

performance can not be ensured for this case, the situation is most likely

hopeless. For algorithm design, however, a truth model which statistically

characterizes all sources of error is needed to indicate when iterations on

the algorithm design are getting close to fundamental limits.

The advantage of the decentralized approach is that many of the analysis

and synthesis tools required in this design process are readily available.

Subsection 3.3 will detail these techniques and develop some new ones.

3.2 RESIDUAL GENERATION

As discussed in the previous section, the purpose of the residual genera-

tion function is to translate redundant information about the system (in the

form of models) into signals which exhibit a well-known and easily character-

ized behavior (e.g., near zero with no significant trends during normal opera-

tion). These signals are formed through the relationships among measured

variables embodied in the system model.
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A variety of techniques for generating decentralized residuals have been

developed (see [5], [22] - [24], [20]) and are described here. They are

divided into 4 separate categories: memoryless relations, finite-memory rela-

tions, open-loop relations, and closed-loop relations.

3.2.1 Memoryless Relationships

Memoryless relationshps are relationships among measured variables which

are valid at every time instant. They are easy to derive from static models

and have been used in numerous applications from triplex or quadraplex sensor

systems [6] to redundant arrays of inertial sensors [28].

In linear systems, memoryless relations are obtained as follows. The set

of m measured variables, y, is related to the set of n "influence variables,"

x, by,

y = Cx (3-5)

where C is the m x n observation matrix. Memoryless residuals or relation-

ships are formed by solving the equation wTc = 0 for all m-dimensional inde-

pendent non-zero "parity check" vectors, w. The parity check vectors imply

that under ideal conditions (no model error or noise), a relationship of the

form wTy = 0 is valid. When a failure (e.g., sensor drift, large change in C)

occurs, the residual, 9, formed using this relationship, may deviate signifi-

cantly from its nominal characteristics. That is, when no failure exists

= wTy-- wTCx = 0 (3-6)

and when a failure occurs, x is something different. For example, in the case

of triplex sensor systems, we have
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[1]C = 1

1

(3-7)

wI = [i,-1, o1 (3-8)

w 2 = [I, O, -I]. (3-9)

Note that other parity check vectors satisfy wTC = 0, but all are linear com-

binations of Eqs. 3-8, 3-9 since Wl, w2 is a basis for the left null space of

C.

Of course, the C matrix in Eq. 3-5 represents only a model of the

redundancy relationships available in the static system under consideration.

In order to develop residuals which are minimally sensitive to model errors

and noise under normal operation, consider the uncertain system,

y = C£x + n£ (3-10)

where the observation matrix C£ is parametrically related to the random

variable £ (representing uncertainty; £ takes on a finite number of values in

the mathematical framework of [22], n£ is a zero mean Gaussian noise process

with covariance R£, and x is a random variable with zero mean and covariance

Z£. From Eq. 3-10, the probability density function of y is

p(y) = f p(y[£) p(£) d£ (3-11)

where p(yl£) is a Gaussian density with zero mean and covariance,

cov (yl_) = C_r_c_r+ R_ (3-12)
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In reference [24], several methods of generating robust residuals using this

formulation are given. They include minimization of the variance of the

residuals, minimizing the average entropy and several methods which make

explicit use of failure models to guarantee sensitivity to particular failures

as well as insensitivity to model error and noise. In minimizing the variance

of the residuals, for example, we define a t-dimensional residual vector, v;

= WTy (3-13)

The function to be minimized is J=Trace[E{ vTv}] which can be written

J ffiTr{WT[/(C_E£cT£ + R£) p(£) d£]W}

= Tr{W T C W} (3-14)

where C is used to denote the term in brackets. If we constrain W so that it

is non-zero, (e.g., wTw = I), then it can be shown that since _ is synetric,

the solution is to take the columns of W as the eigenvectors corresponding to

the t-smallest eigenvalues of C.

One can interpret this result geometrically by considering the following

example. Let E£=I and R£=0 for all £ and let

[cos(£)_C£ = (3-15)

Lsin (_)]

where £ is a uniform random variable on [81, 82]. In this case C can be com-

puted and the eigenvector corresponding to the smallest eigenvalue computed.

Through a change of variables, it can be shown that the "optimal" residuals

are computed by projecting y onto a space which is orthogonal to the vector,
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I cos
sin

(81 + e 2)

2

(81 + e 2)

2

1 (3-16)

This situation is depicted in Fig. 3-5:
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IMAL PARITY CHECK

R-2955

Figure 3-5. Geometrical Interpretation of Robust Residuals

If the linear relationship of Eq. 3-5 is not available, it may still be

possible to generate memoryless residuals. Suppose

Yl = f(Y2 ) (3-17)

models a static relationship between measured variables Yl and Y2" Then the

residual,

v = Yl - f(Y2) (3-18)

can be computed at each time instant and used for FDI.
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As an example of this kind of memoryless relation, consider the force

balance relationship in a rigid aircraft model. The aerodynamic forces on an

aircraft can be related to the relative velocity of the aircraft with respect

to the air mass, V, the angular velocity of the aircraft about its C.G. (_)

and the deflections of the control surfaces, 6, by

F = f(V, _, 6) (3-19)

This force, in turn, can be directly related to the output of the compensated

(for off C.G. effects) accelerometer measurements. That is, since the

aircraft obeys [29],

m(; + _ x V) = F + mg (3-20)

and the accelerometer readings (which measure specific force) obey,

Am = V + _ x V - (3-21)

a set of three translational residuals can be defined by,

= m Am - f(V, _, 6) (3-22)

when air data, inertial data, and surface deflections are all measured. When

the aircraft is operating normally, sensor errors and errors in the aero-model

cause these residuals to deviate from zero. If a control derivative changes

or a measured deflection differs from an actual (or effective) deflection,

these residuals can deviate significantly from their behavior under normal

conditions, and are, therefore, useful for detecting such failure modes.
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3.2.2 Finite Memory Relationships

A finite memory relation is one in which measured variables over a finite

window in time are used. In the linear case, they can be derived similarly to

memoryless relations as follows. Consider the linear system

where

x(k+l) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

x(k) = NS - dimensional state vector.

y(k) = NO - dimensional output vector.

u(k) = NC - dimensional input vector.

(3-23)

A redundancy relationship is now defined as a linear combination of

measurements and controls over a finite window of observation. Specifically,

if we let yT(k) = (yT(k), yT(k+l), ... yT(k+P)), and uT(k) = (uT(k), uT(k+l),
P P

... uT(k+p)), then redundancy relationships take the form

v(k) = WT _Yp(k)7 = Wy T Yp(k) + WuTUp(k)
!

Up(k)J (3-24)

where v(k) is the t-dimensional residual vector which, under ideal circum-

stances (no noise or modeling error) is identically zero, and W is the parity

check matrix. Next, we can expand Yp(k) in terms of the system matrices

(A,B,C,D,) as (see [24])

Yp(k) =

-c

C A

_C Ap _

x(k) +

D 0 ...

CB D

_C AP-IB CB D

Up(k)

(3-25)
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or

Yp(k) = Mp x(k) + Np Up(k) (3-26)

Thus the residual _, Eq. 3-24, can now be written as,

= (3-2 7 )

I LUp(k)_

When no modeling error or noise is present, we can make 9(k) identically zero

by choosing W as an orthogonal basis for the left null-space of the matrix,

Mp =
(3-28)

That is, we find all the vectors for which wT Mp = 0 and form the parity check

matrix using these vectors for its rows.

Comments

Io

.

o

The minimum number of independent parity checks for any p is

NO(p+I)-NS when NO(p+l) > NS.

As discussed in [30], one need only look at values of p=O, ... ,

NS to find all of the independent parity checks.

The solution for W can also be obtained by finding the vectors

which satisfy WvTMp=O, and then solving Wy T Np + WuT = 0 where

Wr = (WyT, WuT)_

Uncertainty and noise can be added to the system model of Eq. 3-23 as in

the static (memoryless) case and similar results derived [24]. The window

length, p, however, in this case is not as easily determined.

In addition to the linear case above, finite memory relationships can

also be obtained for general (nonlinear) system dynamics when sufficient state
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measurements are available. Consider the nonlinear time-invariant, discrete-

time system model,

Xk+ 1 = f(xk, Uk) (3-29)

Yk = Xk + Vk (3-30)

zk = uk (3-31)

Finite-memory nonlinear relationships between the measured variables (Yk and

zk) are then, obviously, given by

Yk+l = f(Yk, Zk) (3-32)

The residual, v = Yk+l - f(Yk, Zk), can then be generated.

Several comments about these relationships and their associated residuals

are pertinent at this point. First, note that although Eq. 3-32 is written in

vector form, each component may be considered as a separate relationship and

evaluated in terms of its usefulness for FDI. Furthermore, full state

measurement is not necessary for generating those individual relationships in

Eq. 3-32 which only depend on a subset of states.

As an example of nonlinear finite memory relations, consider the

so-called "rotational" residuals used in [5] and [14]. In order to form rota-

tional residuals, we first write a discrete time, nonlinear, time invariant

state space model for the aircraft; e.g.,

x(k+l) = a(x(k)) + b(u(k)) (3-33)

where x(k) is the n-dimensional state vector and u(k) is the m-dimensional

input vector. Moment balance and rotational dynamic relationships give rise

to three components of Eq. 3-33 which correspond to the angular velocity
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states, _(k). Since we have sufficient measurements of the states, x, and

inputs, u, for these three equations, three rotational residuals can be

defined by,

_)P)
= _q = _(k+l) - a_(xm(k)) - bin(urn(k)) (3-34)

_r

where am(-) and be(') are the components of a(-) and b(-) which correspond to

the states, _, and where xm and um are the required state and control measure-

ments.

3.2.3 Open Loop Relationships

If we have insufficient state measurements for individual finite memory

relationships, we may derive residuals in an open loop manner as follows.

Consider the general non-linear system model of Eq. 3-29.

mate of xk may be obtained from the recursive procedure,

Xk+l = f k, Zk)

An open-loop esti-

(3-35)

If the measurements are given by

Yk = h(xk) + Vk (3-36)

Zk = Uk (3-37)

then a residual vector may be formed from

^

_(k) = Yk - h(xk) (3-38)

Comments:

I. The residuals in 3-38 are only considered as decentralized

if f and h represent a decoupled subset of a complete system
model, (e.g., an actuator model).
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. In order for Eqs. 3-35 - 3-38 to be useful, the system Eq.
3-35 must be stable so that initial condition errors do not

cause serious deviations of the residual from zero.

As a simple example, consider a first order linear system representing,

possibly, an actuator model. Let,

6A(k) = ;(k)

where

= a x(k) + (l-a)  c(k) (3-39)

6A = estimated surface deflection

x = estimator state variable

6c = commanded deflection

The residual, v, is the difference between the measured surface

deflection, 6A, and the estimated deflection, 6A" That is,

,J(k) = _A(k) - 6A(k) (3-40)

The linear model in Eq. 3-39 is typically chosen to match the DC gain and low

frequency phase of the true actuator. In addition, rate and position limits

can easily be added to the residual generation procedure by appropriate modi-

fications of the estimate, 6A, at each stage.

3.2.4 Closed Loop Relationships

This case is the most general and is equivalent to the Kalman filter (or

extended Kalman Filter) approach if no use is made of the natural system

decoupling. In general, if the system and observation model are given by Eqs.

3-29 and 3-36, 3-37 respectively, then a closed-loop residual can be formed

from,
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X--k+l= f(_k + GVk, Zk) (3-41)

= Yk - h (xk) (3-42)

Clearly, the open loop case Eqs. 3-35 - 3-40 is equivalent to the closed loop

case with G = 0. Also, when the functions f(',-) and h(-) are linear, it is

possible to relate the set of finite memory relationships to the closed loop

relationships as well. This can be seen in the one dimensional linear full

state measurement case as follows.

Let the system be described by,

Xk+ I = AXk + B_k (3-43)

The one dimensional closed loop residual, vCL, is given by

X--k: A[ -Xk-I + G(Xk_ 1 - Xk_l )] + BBk-I

VCL(k) = Xk - Xk

(3-44)

(3-45)

Obviously, when G=0 we get the open loop case, and when Gffilwe get the finite

memory case. Furthermore, rewriting Eq. 3-45 in terms of the state and esti-

mate at time k-l, we can derive the following relationships;

VcL(k) = -AG vCL(k-l) + _oL(k) (3-46)

VcL(k) : VFM(k) + A(I-G) _CL(k-I) (3-47)

where VFM(k) denotes the finite memory residual (G-I) and _oL(k) denotes the

open loop residual (G=0).
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In general, closed loop residuals (G#O,I in the above) will have failure

effects which appear in all the residuals in a fairly complex manner. Further-

more, the affects of modeling error on closed loop residuals are not easily

characterized [6]. Thus, decentralization of the closed loop residual gener-

ation process is possible only when the system has naturally decoupled modes.

Finally, we note that the choice of Kalman gain, G, for FDI purposes, is

not necessarily straightforward. The ideal choice of G would produce residu-

als which are insensitive to model error and noise, and respond quickly to

failures, with high sensitivity, in a well-deflned and robustly distinguisha-

ble manner, for each class of failure types. Although this is a tall order,

if we take advantage of system decoupling, we may reduce some of the require-

ments on G by ensuring that only a subset of failures appear in the residuals

generated by Eqs. 3-41, 3-42 and only a subset of model errors affect the

behavior of vk under normal circumstances. Some recent work in the area of

robust Kalman filter design for FDI is given in [31].

3.2.5 Summary of Residual Generation Issues

We have seen that decentralization of the residual generation process

consists in defining residuals in such a way that both failures and model

errors affect only small subsets of residuals. This will, in turn, allow us

to make selective use of the redundancy relations in the decision process.

Only those relations or residuals which provide significant information about

a specified set of hypotheses need to be considered when defining algorithms

for distinguishing those hypotheses.

All of the residuals we have defined are, of course, based on design

models. The complexity of the residual generation process is, therefore,
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directly related to the complexity of these models. In some cases, it may be

appropriate to use a combination of residual generation techniques to form a

suitable set of individual or decentralized residuals. Whatever the process,

however, it is important to recall that we will always use a model of reality

and, in so doing, we require that an analysis of modeling error be made before

any residual is used in the decision process.

3.3 DECISION PROCESS DESIGN

In subsection 3.1, we described a general structure for the information

collection part of the decision process. This structure consists of a

two-level process with three functional blocks: trigger, verify, and isolate

(see Fig. 3-3). Each block is composed of a variety of statistical tests

which are designed independently to make reliable decisions and make use of

only the best relationships in each particular test.

Figure 3-4 illustrated the basic methodology behind the design of these

tests. In this subsection we will develop, largely by example, some of the

most useful analysis and synthesis tools which comprise this methodology.

First, however, a short review of concepts in statistical hypothesis testing

is given.

3.3.1 Review of Statistical Hypothesis Testin_

A great deal of literature has appeared throughout the years on the sub-

ject of statistical hypothesis testing. Nevertheless, many results are based

on the same fundamental concepts involving probability theory and Gaussian

statistical assumptions. These concepts are now described.
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UNITARY DECISIONMAKING

The first concept typically appears in the statistics literature (e.g.,

see [B-stat]) and involves the problem of deciding whether or not an observed

set of samples (measurements) can be described by some assumed underlying

probability distribution. What is generally true, however, is that given this

assumed distribution, one can only reliably reject this "hypothesis." Hence,

in the statistics literature, one finds referral to forming a "null hypothe-

sis" in which all hypotheses besides the one we really wish to acc_ are mod-

eled by a single distribution. If the null hypothesis is reliably rejected,

then its complement can be reliably accepted.

To see why hypotheses can only be reliably rejected, consider the case

where a random vector, y, is assumed to have a jointly normal distribution

under the null hypothesis, Ho. Denote this by y-N[m; E] corresponding to the

probability density function (pdf)

py(y) ffi I I (y_m)T[-i (Y-m) (3-48)
[2_ix]]n/2 exp -

where n is the dimension of the random vector, y, and I'I denotes the determi-

nant function.

We now wish to define a decision region, D, in which the condition ygD is

very unlikely. Figure 3-6 shows one definition of D for the zero/mean one

dimensional case (note that D is not unique). The area under the shaded por-

tion of the curve is a. For multivarlable zero-mean unimodel densities, we

can choose D as follows:

D = {Y: Pr[,yH2)NYH 2] 4 e} (3-49)
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Figure 3-6. One Dimensional Rejection Region

where R-| denotes Euclidean norm (others are possible) and where = specifies

the level of significance. When the random variable y is used to represent a

residual vector and the norms in Eq. 3-49 are taken with respect to some

covariance matrix, E, then the rejection criterion Y_D is equivalent to the

well known weighted-sum-of-squared-residuals (WSSR) test.

In the FDI process, rejection tests are useful in the trigger process

(which monitors operation). However, since no mention of alternate hypotheses

(failures) is made, there is no guarantee that the rejection test of Eq. 3-49,

if used as a trigger, would be sensitive to all important failures. In fact,

it is certain that this test is not maximally sensitive to all failure modes.

Thus, in failure detection, since alternate hypotheses are sometimes available,

we need to consider binary, or in general, M-Ary decisionmaking.
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M-ARY DECISIONMAKING

The general problem here can be described as follows. Consider an

observed signal y(k) which can be characterized in a probabilistic sense by

two probability density functions (pdf's) each being valid under two different

hypotheses. (Only 2 pdf's are considered here for simplicity, however, multi-

ple hypotheses may also be considered). That is, we can define two condi-

tional pdfs, p(YIHo) and p(YIHl), where Y is any specified set of the signal

y(k), (e.g., y={y(k); k=ko, ... , kl}).

The problem which must be solved is the definition of decision regions D i

which map the observables, Y, into decisions about the system status. That

is, we will decide that Hi is true when Y _ Di, i=0, I.

In order to choose D i in an "optimal" manner, we must specify an optimi-

zation problem. Two commonly mentioned problems are the Bayesian and Neyman-

Pearson problems both of which are now described.

Bayesian Hypothesis Testing - In this method we attempt to choose Di

through minimization of an expected cost function associated with the four

different decision regions shown in Fig. 3-7. The total cost C is given by

c = cij'Pr(Y DilHj) (3-50)
i,j

Where Cij is the cost of deciding that hypothesis i is true when in fact

hypothesis j is true (i.e., Y _ Rij). The optimization problem,

min E{C}

Di,i=0,1
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Figure 3-7. Decision Regions

then, has the solution [32],

P(YIHI ) PO (CIo - COO)

DI = Y: P(YIHo) > P1 (Co1 - CII)

DO = y: y_ DI(Y ) (3-51)

where P1 and P0 are the a-priori probabilities of each hypothesis. Notice

that the form of the solution involves the comparison of the ratio of two

pdf's or "likelihood ratio", to a threshold which is a function of the costs

of Various decision conditions. The form of this solution is quite general as

it is also the form of the solution to the Neyman-Pearson problem described

below.

Neyman-Pearson Formulation - This method recognizes that the Bayesian

costs are difficult to specify and formulates a problem in terms of specific

performance traits. In particular, let PFA denote the probability of

incorrectly deciding that H I is true when H0 is, in fact, true. Also, let PD

denote the probability that the correct decision, HI, is made when H 1 is true.

The optimization problem,
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max PD

subject to PFA = Y (3-52)

then, has the solution,

D I = Y: _(Y]H0 ) > t

DO = {y: y _ DI(Y)} (3-53)

where we have,

PFA =
P(Y[H 0) dY

D1 (3-54)

PD
P(YIHI) dY

DI (3-55)

Thus the form of the solution to this problem is the same as the Bayesian

case. The threshold, t, must be determined so that Eq. 3-54 is satisfied, and

the resulting performance, PD, is determined from Eq. 3-55. The tradeoff

between PFA and PD is typically expressed by a graph called the receiver oper-

ating characteristic (ROC) as shown in Fig. 3-8. At the extremes we see that:

I. if t = _, then PFA = 0 and PD = 0, and

2. if t = O, then PFA = 1 and PD = I.

Of course, neither extreme is useful and the choice of operating point depends

on some idea of acceptable performance. When this idea is expressed in terms

of the Bayesian cost, the operating point is determined by the threshold

choice of Eq. 3-51.
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Figure 3-8. Receiver Operating Characteristic (ROC)

Example -As an example of the above concepts, consider a situation in

which under H0, Yk is a white gaussian noise process while under HI, y(k) is

the same noise process plus a constant. That is,

H0: Yk = nk

HI: Yk = nk + m (3-56)

Now, if decisions are made on the basis of a fixed set of samples of y(k), say

y = {y(k): k=l, 2, ... , N}, the decision rule becomes

N D I

£ = Z mT_ 1 (yj - m/2) > t I (3-57)

j=z <
DO
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where E is the covariance matrix of the white noise process and tI = £n(t)

since Eq. 3-57 is the natural logarithm of the decision rule of Eq. 3-53. The

decision statistic, £, is called the log-likelihood ratio (LLR) and Eq. 3-57

is an example of an "LLR test". We also note at this point that if Eq. 3-57

operates over a moving window of data, y(k), as is frequently done in prac-

tice, then the LLR decision statistic can, more generally, be viewed as the

output of a finite impulse response filter. This "filter" interpretation is

useful from the standpoint of complexity reduction since similar filters with

fewer states can be used and analyzed.

Returning to our example above, we wish to characterize the performance

of the test in Eq. 3-57. Since Y is jointly Gaussian, the decision statistic

£ is a Gaussian random variable, and can, therefore, be characterized in terms

of its mean, £, and variance, o£ 2 under each hypothesis. These are given by

HO: _ = -NmTE-Im/2 < 0

o£2 = NmTE-Im (3-58)

HI: £i = -£0 > 0

o£2 = NmTE-im (3-59)

The probability of false alarm PFA can be computed as a function of tI using

Eq. 3-58 and percentage points of the Gaussian distribution. If we let Q(E)

represent the area under the zero mean unit normal function from (E, =), then

we have

PFA = Q (3-60)
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Furthermore, PD may be computed from

tl-_l.l
PD = Q m (3-61)

Eqs. 3-60 and 3-61 completely specify the ROC. If we wish to make PFA = I-PD

(i.e., equal costs for both types of errors), it can be shown [32] that

tI = 1/2 (_I +T0) = 0 resulting in performance which is completely character-

ized by the quantity d2 = (£I _ _)2 /0£2 (Note that d 2 is precisely the

signal-to-nolse ratio used in Eq. 3-3). That is, larger values of d imply

smaller probabilities of incorrect decisions. Furthermore, it can be shown

[32] that, for any t I, PD can be determined from d and PFA, with larger values

of d corresponding to larger values of PD- This is shown in Fig. 3-9. For

the example we are considering here,

d2 = N mT_-im (3-62)

Thus, we see that tradeoffs exist between performance (as expressed by d2) and

window length, N, failure size, m, and noise covariance, E.

The Sequential Probability Ratio Test - The LLR tests described above are

known as fixed sample size tests for obvious reasons. Another test which has

been used extensively for FDI is the sequential probability ratio test (SPRT)

[5] [33]. Rather than basing decisions on a fixed sample of data, the SPRT

decides automatically when enough samples have been taken to make a reliable

decision. That is, given PFA and PD, the SPRT chooses one of three decisions

after each sample: H0 is true, H I is true, or take another sample. These

choices are completely defined in terms of an LLR statistic and two thresholds

by
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Figure 3-9. Detection Probability Versus d

£k > t+ ===> decide H 1

£k < t- ===> decide H0

t- 4 £k • t+ ===> take another sample

(3-63)

where £k = £n [p(YklHl)/P(YklH0)] and Yk = {Y(J): J = 1,2 ..., k}. Under

ideal circumstances, the test is guaranteed to terminate and is the optimal

test in the sense of minimizing the number of samples [33]. Also, if we

choose t+ and t- by

t+ = £n _i_---_I

t- = £n [IB/l-o.]

(3-64)

then it can be shown that [34] PFA <_ and PD > I-B.
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DISCUSSION

This concludes the review of basic hypothesis testing theory. The

results presented show that in many cases of practical interest, the hypothe-

sis tests which comprise the decision mechanism part of the FDI process con-

sist of the formation of a decision statistic (e.g., the log likelihood ratio)

and the comparison of that statistic with one or more thresholds. Optimal

computations of the parameters of the mechanism for generating decision sta-

tistics and the thresholds were given on the assumption that the underlying

pdfs accurately described the behavior of the observed quantities.

As we have argued in subsection 3.1, however, it is rarely possible to

adequately characterize these pdfs in practice. Therefore, the design of

hypothesis tests can use these classical ideas only as a means for determining

algorithm structure. The parameters, however, must be chosen not for optimal

performance in the nominal case, but for robust performance, i.e., maximal

performance when averaged over all sources of modeling error. In the next

subsection we go into greater detail on these ideas.

3.3.2 Decision Process Design and Analysis

As discussed in subsection 3.1, the classical techniques discussed above

form only a basis for defining the structure of the hypothesis tests which

comprise the trigger, verify, and isolate phases of the decision process. The

parameters of these algorithms, however, must be selected so that the result-

ing tests are robust to errors in the statistical characterizations which were

used to develop them. The tools which will be developed in this section are

based on the notion that these tests can be "robustified" by selecting their

parameters to "optimize" and/or tradeoff desired performance measures with

respect to a statistical truth model. That is, rather than using the
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parameters specified applying classical theories to the design model, we wish

to select parameters which optimize performance and achieve the desired

tradeoffs when averages are taken with respect to a truth model that includes

all error sources.

To be more explicit, we assume in this methodology that the truth model

can be described by two pdfs for every hypothesis. The first pdf is the

conditional distribution of the measured quantities conditioned on a random

vector which represents the sources of error which are ignored in the design

model. This is denoted by p(yS, Hi). The second pdf is a characterization

of the model error vector, 8, p(OlHi). The design model is based on the

assumption that 8 takes on a specific value (usually zero). Thus, the

structure of the decision algorithms are determined using p(ylS=8o, Hi). The

algorithm so determined will have a number of parameters, generically denoted

by P. To select P, we go back to the original hypothesis testing algorithm

(e.g., max PD subject to constant PFA) and select P using the truth pdfs,

P(YlHi) = fP(YlS, Hi) P(elHi) dO (3-65)

Although this concept handles many sources of uncertainty, there may be

other unknown quantities which can not be adequately represented by a random

variable with some known distribution (e.g., failure magnitude). In this case

we must look at the sensitivities of the various performance measures to vari-

ations in the unknown quantities.

*A natural question arises here: Why not design everything for the truth

model? The answer is that one would then expect good performance only for

the truth model and little robustness to its assumptions. The truth model

is not reality either. It is just a vehicle for obtaining a warm feeling

about the robustness of the algorithm based on the design model.

51



ALPHATECH, INC.

EXAMPLE 1 (DETECTION)

This example deals with fixed sample size tests. It illustrates the use

of the classical theories to define an algorithm structure and the use of a

truth model to select parameters of that structure based on optimization and

engineering tradeoffs. This example, while very simple, will be very useful

in designing trigger tests for aircraft path failures.

The design model for this example is given by Eq. 3-56. Under Ho the

observed vector process is white Gaussian noise, and under H I this noise is

contaminated by a constant vector. The decision process structure for a fixed

sample size, N, is given in Eq. 3-57. Since we wish to select the parameters

of this algorithm using a truth model, we rewrite 3-57 as

N D1

S = pt _ yj >
j=l <

Do

t" (3-66)

Thus, the parameters which must be chosen (given N) are a projection vector,

P, and the threshold, t". The truth model we will use to select these

parameters is given by

Ho : Yk = b + nk (3-67)

H 1 : yk = b + nk + m (3-68)

where b is a random zero mean Gaussian constant vector whose covariance matrix

is Eb, nk is a zero mean white noise process with covariance matrix, En, and m

is a known constant vector. As discussed in subsection 3.3.1, the performance

of the test in 3-66 can be completely characterized by the distinguishability
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metric d 2, however, we now compute d2 using the truth model of Eqs. 3-67 and

3-68. In particular we can compute the mean and variance of S under H o and H I

2 2

(denoted by So, SI, Oo, and oi) as

so = 0 (3-69)

This gives,

02 = o2 = o2 = pt(N2 Eb + N Zn)P
1 0

(3-70)

SI = N ptm (3-71)

d 2 = N(ptm) 2

pt(NE b + En)P

(3-72)

Recalling that large values of d 2 result in large probabilities of detection

and low probabilities of false alarm, we wish to choose P to maximize the

right hand side of Eq. 3-72. To do this, define the following quantities,

w

C =N lb+ En, (3-73)

_t_ = _, (3-74)

= Q P, (3-75)

m = Q-t m. (3-76)

This allows us to rewrite Eq. 3-72 as

d2 = N(_t m) 2 / (_t _) (3-77)

which is clearly just the square of the magnitude of the projection of m onto

P. Thus d2 is maximized when P = Km (K is any real scalar) and using Eqs.

3-73 through 3-76 we can solve for P as
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P = K_-I m (3-78)

Next the threshold t" is chosen. We recall that the structure of Eq.

3-66 could be derived from the problem of maximizing PD subject to a given

value for PFA" To achieve the desired PFA we must compute it as a function of

t" using the truth model. Since this example deals with Gausslan statistics,

this computation is straightforward. In particular,

PFA = Q (t"/o) (3-79)

where o is defined in Eq. 3-70 and Q(-) is the error function discussed in

subsection 3.3.1. The threshold t" is then chosen using percentage points of

the Gaussian density. For example_ to achieve PFA = 10-4 we need t"

approximately equal to 3 o.

Similarly, for a known value of m, we can compute PD using Eq. 3-61 and

the truth model pdfs. When 'm' represents a failure, however, it is sometimes

of interest to define a minimal failure in terms of a desired value of PD"

This can also be done using Eq. 3-61 and the truth pdfs. For example, to

achieve PD = i0-_, we need (_I - t") = 3 o. Furthermore, since d 2 (and,

therefore, PD) is monotonic in SI, we can guarantee that any failure magnitude

which is larger than the minimal one defined in this way will achieve a PD

which is no smaller than the desired value. This is a very desirable trait

for failure detection systems in which the size of a failure is infrequently

known a priori.

Another tradeoff which can be accomplished using the above computations

is the choice of sample size, N. Since all the computations are a function of

N, we could, for example, proceed as follows:
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I. Vary N

2. Choose P to optimize d 2

3. Set t" to achieve PFA

4. Compute minimal failure size for given PD"

Notice that, in contrast to Eq. 3-62, as we let N --> =, d 2 approaches a

finite value. That is, there is a fundamental limit to the reliability of

decisions due to the presence of model error -- an intuitively pleasing

result.

EXAMPLE 2 (ISOLATION)

This example is a generalization of Example 1 and will have implications

in terms of isolation test design for aircraft path failures. We consider

fixed sample size tests for the problem of distinguishing the two hypotheses:

HI : Yk = ml + nk (3-8o)

H2 : Yk = m2 + nk (3-81)

The truth model is described by

HI : Yk = ml + nk + b (3-82)

H2 : Yk = m2 + nk + b (3-83)

where m I and m2 are two constant vectors and nk and b are the white noise and

random bias vectors of Example I. The LLR test obtained using the design

model Eqs. 3-80 and 3-81 is

D I

N I 1 _ t (3-84)
I (ml-m2)TZnlyj - _ mI Z_nlml + _ m_Znlm2

j=l D 2
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As in Example 1Eq. 3-84 can be rewritten as,

N D1

s=pt_yjX t,
j=1 D2

(3-85)

The distinguishability metric, d2, calculated using the Gaussian statistics of

the truth model in Eqs. 3-82 and 3-83 is

d 2 = (N ptAm)2/_2 (3-86)

where _2 is defined in Eq. 3-70 and Am = (m I - m2). Given m I and m2, the

choice of P which maximizes d 2 is

p -- C---I Am (3-87)

The choice of t' can be made for either HI or H2 in a manner similar to Exam-

ple i. Alternatively, a Bayesian cost can be defined as in Eq. 3-50 and the

decision regions computed by solving the Baysian optimization problem using

the truth model statistics defined by Eqs. 3-82 and 3-83.

The similarity to Example I breaks down when we try to define minimal

failures. This is because, for the test described by Eq. 3-85 with the pro-

jection vector defined by Eq. 3-87, the d 2 metric (Eq. 3-86) is not necessar-

ily monotonic with failure size. That is, if the d 2 metric is computed using

cim i in place of m i in Eq. 3-86, then as ci increases from I, d 2 may go up or

down. In fact, it can be shown in some cases that the probability of making

an incorrect decision may actually approach i as ci approaches infinity. This

fact can easily be seen in Fig. 3-10. The figure shows the decision region in

the space spanned by the decision statistics Zyi(k) for i = I, 2 (the compo-
k

nents of a two dimensional measurement y(k). These decision regions are
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determined by Eq. 3-85 with a threshold that weights the costs of incorrect

decisions (for both c i = I) equally in a Baysian problem. It is easily seen

from the figure that if the magnitude of m I is actually larger than its design

value, then the likelihood that the statistic lies in D 2 can become quite

large. Thus, this particular choice of parameters is not robust to changes in

the magnitudes of the vectors m i.

EXAMPLE 3 (ROBUST ISOLATION)

The problem in the previous example illustrates that we can not always

use the structure defined by a design model and expect adequate performance.

This is because some unknown parameters, such as failure size, result in vari-

ations in performance which are too large to be acceptable. When this is the
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case, there are typically two approaches which can be taken. The first and

most often used approach involves estimating the unknown parameters and form-

ing a generalized likelihood ratio test [32]. While this approach performs

well in some cases, it is also possible that, due to mismatch between the

truth model and the real world, estimation errors can cause severe performance

degradation. Furthermore, the analysis and design of such algorithms is com-

plicated by the fact that a more detailed truth model is needed. The alter-

nate approach, which is described here by example, is sometimes referred to as

invariance. In this approach we try to develop tests whose performance is

invariant to changes in these "nuisance" parameters.

In this case we consider the design model hypotheses,

Hi : Yk = ci mi + nk i = I, 2 (3-88)

where ci is an unknown scalar. When both ci were known, the binary decision

problem of Example 2 completely specified both test structure and thresholds,

and performance measures could be computed. In Example I, however, notice

that one option we had in the design process was to turn the problem into one

of rejecting Ho with high confidence (satisfy PFA) and then evaluate what

alternate hypothesis parameters (failure size) would ensure adequate

performance (PD)" We take the same approach in this example for each

hypothesis described by Eq. 3-88. We will see that ci invariant decision

regions using this approach can easily be described.

We start with the problem of rejecting H I using an N-window of observa-

tions. Using the results of subsection 3.3.1, we can define for any value of

Cl, an _ significance rejection contour by

N N

D(cl) = {Yk : Pr[ II_ (y(k) - cI m[) II2 _ _ _ (Yk - clml )H2]_ _} (3-89)
k=l k=l
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Note y(k) denotes the random variable and Yk are sample values. The sums in

Eq. 3-89 are taken over the N-window of data and the norms are taken with

respect to the white noise covariance matrix to be consistent with the design

model Eq. 3-88. Since c I is unknown, however, we want a decision region for

rejecting H I such that the significance of the resulting test is invarlant

under changes in cI. That is, we want a decision region which is the locus of

points in measurement space defined by Eq. 3-89 for all Cl, or

D ffi D(c 1) (3-90)

For two dimensional measurements, Yk, this region is easily derived from Fig.

3-11. To define this region in general, let W represent a transformation

matrix such that zk = W y(k) (note we can consider each time instant sepa-

rately in this case because the mean vector mI is constant). If W m I = 0,

then p(z k I HI) = p(W nk I HI) which is not a function of c I. If the measure-

ment vector is n-dimensional, then the transformation matrix W spans an n-I

dimensional subspace. The generic rejection test would then be defined by the

region D which can be rewritten,

-I -I

D = { Yk : Zk = W Yk and Pr[ _(zktC z zk) • _ ZktC z Zk)] _ = } (3-91)
k k

where C z is some positive symetric matrix (usually the covariance matrix of

Zk, though others may be desirable).

Given a choice for C z and Ac, the region D completely defines a rejection

test for H I which is insensitive to changes in cI. In this example, however,

there is an alternate hypothesis which we have not yet discussed. Since there

is only one alternate hypothesis, H 2, in this example, we would like to define

59



ALPHATECH, INC.

a-S|GNI FICANC£

CONTOUR FOR

C1=1

N

n(k)
J-I

R-2962A

Figure 3-11. Two Dimensional Visualization of Decision

Region D = Complement of D

the H 1 rejection region to be maximally sensitive to H 2 (rather than being

generic). That is, we want to define D so that the smallest possible values

of c 2 will make the probability that Yk lies in D large. To do this, let us

first define the rejection test based on the design model as:

S1 = P1 t [ Yk > D1 tl (3-92)

Note that this test is not in the same form as Eq. 3-91 indicates, but is con-

sistent with the test structures in Example 2. Again, this test assumes the

failure sign is known. To be a rejection test for H I we know, from the above,

that PI must be orthogonal to m I. The remaining degrees of freedom are then
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chosen to optimize the sensitivity to H2 using, for example, the truth model

of Eqs. 3-82 and 3-83. The d2 metric is used now as a measure of sensitivity

because, for the test defined by Eq. 3-92 with Pltml = 0, d 2 is monotonic c2.

That is,

d12 = [E{SI I H2} - E{SI I HI}]2 / Var[Sl [ HI or H 2]

= c22[Pltm2 ]2 / Plt[N2Yb + NEn]P I (3-93)

Equation 3-93 is maximized for any value of c2 by choosing P1 as follows. Let

E = N2Eb + NEn = QtQ, P1 = QPI, and mi = Q-tm i for i = I, 2. Then the desired

optimization problem is,

max [ P1 t m2 I/Pit P-1

s.t. _i t ml = 0 (3-94)

The objective function in Eq. 3-94 is easily seen as the projection of m 2 onto

P1 and the constraint requires that P1 lie in the null space of m I. Thus the

solution is just the projection of m2 onto the null space of m I. Finally

solving for PI, we have,

PI = K Z-l[m2 - (m2tE-iml)/(mltZ-Iml)ml ] (3-95)

where K is just a normalization constant.

We can now follow the same procedure for H2 and obtain a test based on a

decision statistic $2, which rejects H2 with maximal sensitivity to H I. The

two hypothesis tests define decision regions in which it is possible to

reliably reject each hypothesis. This is shown in the two dimensional case in

Fig. 3-12. Note that in contrast to Example 2, there are four regions of

interest:
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Figure 3-12. Decision Regions for Two Rejection Tests

Region

Region

Region

Region

I) H 1 can be rejected, but H2 can't

2) H2 can be rejected, but H 1 can't

3) Both H I and H 2 can be rejected

4) Neither H I nor H2 can be rejected

--> Decide H 2

--> Decide Hl

--> Reject H l and H 2

--> Can't decide

Thus, these two tests allow us more flexibility in the decisionmaking process

when events occur that can be described by neither of the hypotheses.

Finally, we note that it would be possible to simplify this two-test
t

decision process by considering the test,

(St - $2) > tI' -->

(S 1 - $2) < -t 2' -->

Otherwise _>

Decide H2

Decide H I

Can't decide (3-96)
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This test is not equivalent to the two test procedure. The can't decide mode

may incorporate parts of both regions 3 and 4 of the two-test procedure depend

ing on the choice of tI' and t2'. Clearly tI' = t2' = 0 is not a reasonable

choice. However, the choice of tI and t2 and the relationship of these thesh-

olds to the two-test procedure thresholds has not been fully investigated. A

reasonable choice would be to choose tI = t2 such that, independent of the

hypotheses failure size (el) , the probability of making a wrong decision is

guaranteed to be low. For example, if we want Pr[(S 1 - $2) > t I HI) < _

independent of el, we assume cI = 0 (the worst ease) and set the threshold at

the _ significance level for the assumed Gausslan distribution of (S1 - $2).

EXAMPLE 4 (UNKNOWN FAILURE SIGNS)

In the above examples, we assumed that even if the "failure" magnitudes

were unknown (ci in Example 3), the sign of the failure was known. This exam-

ple justifies a rather obvious modification to the tests described in the pre-

vious examples to account for uncertain signs. The modification results in

taking the absolute value of the decision statistics, i.e., performing two-

sided tests.

Consider the design model of Example I with uncertain failure sign given

by,

Ho : Yk = nk

H I : yk = im + nk (3-97)

where i takes on a value of 1 or -I. The generalized likelihood ratio test

for an N-window of measurements yN is defined by,
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D!
Max P(YN I HI, i) / Max P(YN I Ho, i) >< t

i i D O

(3-98)

The denominator of Eq. 3-98 is not a function of i and the numerator can be

maximized by maximizing the natural log of the numerator (assume Gaussian

statistics and nk white as in Example I).

depend on the choice of i, we get

N

i = arg max i[m [.Yk]
k=l

If m and

i = -I.

Ignoring the terms which don't

(3-99)

N

Yk are the same sign, i = I; and if they are opposite signs, then

k=l N

Thus, i = sgn (mk[lYk)'a Putting this solution back into Eq. 3-98,

taking logarithms, incorporating all the constants into a threshold and

expressing the decision statistic in general form (as we did in Example I) we

have the test,

N D 1

I et_ yk I >< t '

k=l Do

(3-100)

SEQUENTIAL TEST DESIGN

The design of sequential tests such as the SPRT mentioned in subsection

3.3.1 is somewhat different than the fixed sample size tests described in the

above examples. Sequential tests address the binary decision problem only.

Samples (measurements) are taken until a decision can be made in favor of one

hypothesis or the other. The number of samples needed to complete the test is

a random variable. Characteristics of both hypotheses must be specified in

some detail which, for the FDI problem implies that we must choose "minimal"

failure magnitudes and ensure that larger failures result in shorter test times.
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As discussed at the very beginning of this subsection, we want to specify

sequential tests using a design model and then choose their parameters based

on a truth model. Consider as an example, the design and truth models of

Example I. The SPRT is easily derived and written in a general form as

k k

Sk = GI _ (ptyj) - _ GD > t+ -->

j=i j=i
Decide H I

< t- --> Decide H o

< t+ and > t- --> Take another sample (3-iOi)

where GI, GD, P, t+, and t- are parameters to be specified. Furthermore,

since we know that model error exists, the theoretical guarantee that this

procedure terminates is no longer valid. Thus, it is often useful to specify

a time limit. When the time limit is reached and no decision has been made,

we may either exit with no-decision as a conclusion or perform a fixed sample

size test at this time. A prototype design procedure which makes use of the

truth model is given below.

Step i:

Choose a maximum sample length, N.

Step 2:

Select P to maximize the distinguishability metric, d2(N), for the

maximal length test as in Example 1 (the answer is the same since d 2 is not a

function of G I or GD)
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Step 3:

In keeping with the ideal parameter values GI pt = mtZn and GD = mtZnm/2
N

we proceed as follows. Determine the value of S = E{I ptyk} which makes d2(N)

k=l

acceptable. Set G I = S and GD = $2/2. This results in a test in which values

of [ptyj less than S/2 tend to drive the statistic to its negative threshold.

J

Step 4:

Determine thresholds t+ = -t-.

The last step is the most difficult since no closed form solution exists

which relates the desired performance measures (e.g., PFA and PD) to the

choice of thresholds when the truth model and the design model are not identi-

cal. Reference [35] presents a numerical method which could be used for such

calculations, however, the results are incorrect as detailed in [36]. The

difficulty is easily illustrated by the following equations.

Let Sk be the decision statistic at stage k in the SPRT defined in Eq.

3-101 with thresholds t+ and t-. Also, let Si = (SI, $2, ..., Si). We can

relate PFA and PD to t+ and t- by,

PFA = i=l_/P( Si I Ho) dSi

L+A_ {Si : t- 4 Sj 4 t+, j=l, ..., i-i and Si > t+} (3-102)

I HI) dSi

L+ (3-103)
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Also, we have probabilities of correct rejection (PCR) and missed detection

(PMD) which are given by,

PCR = _ I p( Si i Ho) dsi

i=lJ
L-=A {Si : t- _ Sj (t +, j=l, ..., i-I and Si < t-} (3-104)

L- (3-105)

Note that for N < _, we have PFA + PCR _ 1 since there is a finite probability

that no decision is made (i.e., t- < Sj < t+, j=l, ..., N). Also, Eqs. 3-102 -

3-105 assume that no decision is made if SN e L+ or L-. In some cases, it may

DI _

be appropriate to define the terminal decision rule SN >< t if SN g L+ or L-.

Do

In this case Eqs. 3-102 - 3-105 would have to be modified.

Equations 3-102 through 3-105 must now be evaluated using the truth pdfs

of Sk (as opposed to those assumed in defining Sk as a function of Yk)-

Unfortunately, closed form solutions for these equations are available only in

the simplest cases. If, for example, Sk was an uncorrelated Gaussian process

(not likely, in view of equations like Eq. 3-101), then we could write
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N i-1

PFA = i_l= Pi° m=_l (l-rm°)

N i-I

PMD = i_l=_ qi° m=_l (l-rml)

(3-I06)

(3-107)

j N
PNo Decision = E (l-riJ) (3-108)

i=l

where Pl j A Pr {Si>t+IHj} = Probability of Deciding H 1 at time i, given

Hj and no decision up until time i

qi j _ Pr {Si<t-IHj} = Probability of Deciding Ho at time i, given

Hj and no decision up until time i

riJ _ l-piJ - qij = Probability of deciding to take another

sample at time i, given Hj and no decision
up until time i.

Note that pij and qij are easily computed if Si is Gaussian.

While Eqs. 3-106 - 3-108 may provide approximations to the desired quanti-

ties when Si is not uncorrelated, it is not clear how accurate the approxima-

tion is or when it would break down. In order to get more accurate estimates

of the desired quantities, numerical integration or simulation methods are

needed. For the control element FDI algorithm developed in Section 5, some

interesting heuristic methods of computing thresholds for sequential tests are

developed.

THRESHOLD SCHEDULING

The computations described above are useful when errors in the pdf speci-

fications can only be described in a statistical sense. If this statistical

description adequately characterizes the worst errors throughout the opera-

tional region (or envelope) of the system under consideration, we can be quite
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confident that the resulting FDI design will meet its performance specifica-

tions under all conditions.

The problem in such a worst-case analysis, however, is that the errors

encountered at the limits of this envelope may be so severe that exceptionally

conservative designs result. That is, only failures of extreme severity would

be large enough to appear significant over the worst-case modeling error.

The natural alternative to a worst-case design is one in which we con-

sider a limited envelope for our baseline design and modify the algorithm

towards a more conservative design when large errors are anticipated. The

mechanism which accomplishes this adjustment is known as "threshold scheduling"

and has proven to be an important part of many FDI systems [5], [14] - [16].

The basic idea behind threshold scheduling can be illustrated by considering

the problem of detecting inertial sensor failures using dual redundant sensors

while accounting for misalignment errors. The residual, formed by comparing

two similar sensors at each time, k, in this case is given by

v(k) = Yl(k) - Y2 (k) (3-109)

where

yi(k) = aix(k) + qi(k)

x(k) = variable being measured

ai = actual scale factor (both equal to i with

zero alignment error)

qi(k) = zero mean white Gaussian noise

Thus, we can express the residual, under normal operation, as,

v(k) = Aa x(k) + N(k) (3-110)
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where Aa = al-a 2 and N(k) = ql-q2" Now, in order to achieve a false alarm

rate of I in I0,000, we know that (using percentage points for the normal

distribution) our thresholds (if we perform no information collection) must be

±3.5 oN when either Aa=0 or x=O. The problem is that large values of x result

in large residuals when Aa is non-zero, and the term Aax(k) may get, in the

worse case, sufficiently large so that only enormous differences between Yl

and Y2 can be detected with a threshold that guarantees PFA for worst-case

errors. Threshold scheduling overcomes this worst-case performance by adjust-

ing the threshold on the basis of a failure-insensitive, deterministic esti-

mate of x(k) and a specification of the worst-case scale factor differential.

Thus, the sensor FDI test becomes,

^

I _(k) I > 3-5ON + Aama x x(k) ===> Failure Detected (3-111)

The above example illustrates the need for threshold scheduling and the

basic concepts involved (note, that no attempt is made here to elaborate on

how a failure-insensitive estimate could be obtained). In order to apply

these ideas to other FDI designs, we now describe some of the general

principles involved.

First, we note that the errors which are important for threshold schedul-

ing are those whose statistical contribution to error in the residual depends

on a deterministic signal. In the example above, we saw that the determinis-

tic signal x was used to schedule thresholds. Such a signal provides knowl-

edge about the potential for large errors at each point in time.

Next, the statistical nature of the error source is described by specify-

ing the pdf of the error as a function of this deterministic signal. Again,

in the above example, we effectively assumed that Aa was uniformly distributed
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on [-Aama x, Aama x] resulting in an error term which is uniformly distributed

on [-Aa i(k), AamaxX(k)]. Note, we could also have assumed that Aa wasmax

Gaussian with a known variance, and obtained a different scheduling algorithm.

The threshold schedule can now be determined by specifying the perform-

ance characteristic which must be preserved throughout the entire operational

envelope. For example, the threshold in Eq. 3-111 is the result of requiring

that the false alarm performance be maintained. If missed detection perform-

ance were to be maintained, we would need to characterize the pdf of the

residual under failure conditions along with the error and compute the sched-

uled thresholds accordingly. Note that we cannot maintain both performance

measures simultaneously in a fixed sample test since only a single threshold

can be modified.

Sequential Test Scheduling - In sequential testing procedures such as the

SPRT, two threshold must be scheduled. Since, in these tests, we are willing

to declare that no decision can be made, it is, therefore, possible to main-

tain both PD and PFA, although as errors get large, the likelihood of not mak-

ing any decision increases. As with the determination of nominal thresholds,

the computations involved in determining threshold schedules for sequential

tests are more complex than the fixed sample size case. However, a reasonable

approach is to choose the threshold at each stage, k, such that the probabili-

ties P(Sk>t+IHo ) and P(Sk<t-IH I) (conditions which, respectively, result in a

false alarm and a missed detection at stage k) are equivalent to those

achieved in the original SPRT with no error. (Note, Sk is the SPRT decision

statistic as, for example, in Eq. 3-101). Such a procedure is simple since

each threshold only depends on an estimate of the impact of errors on Sk
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independent of other estimates at other stages, and has performed quite well

in practice [5].

To see this, consider Example [ with the SPRT defined by Eq. 3-101. Sup-

pose that in addition to the random bias error in Eqs. 3-68 and 3-69, there is

an additional error term Ek, which is a function of a known deterministic sig-

nal that is independent of which hypothesis is true. That is, the truth model

is now

Ho Yk = qk + Ek + b

HI Yk = qk + Ek + b + m (3-112)

Let to denote the threshold we select assuming Ek = 0, for all k, and let

tE(k) denote the threshold at time k based on the criterion that the probabil-

ity of false alarm at stage k, given that we've reached stage k, is the same

for Ek = 0 and Ek _ O. That is we want to ensure that Pr[S k > to I Ho, E = 0] =

Pr[S k > tE(k) { No, E _ 0]. Since Sk is Gaussian, this condition implies

that:

to - Soo(k) = tE(k ) - SoE(k )

where S--oo(k) = E{S k I Ho, E = 0}, and SOE(k) = E{S k I Ho, E # 0}.

example_ we have,

(3-113)

For this

k

tE(k) = to + _ GIPtEj (3-114)
j=l

Equation 3-114 defines a threshold scheduling algorithm for tile SPRT of

Eq. 3-101. If the sign of Ek is unknown, we would like to use the worst case

combinations and so the second term in Eq. 3-114 becomes
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k

ClPt Sgn(EjP t) Ej
j=l

(3-115)

where Sgn(Ejp t) is a diagonal matrix of Is and -Is such that if [Ejpt]ii > 0,

then [Sgn(Ejpt)]ii = 1 and if EjP t < 0 then [Sgn(Ejpt)]ii = -I. For imple-
n

mentation purposes we note that Pt Sgn(Ejet)Ej = _ I PiEj i I where n is the
i=l

dimension of P and Ej and Pi and Ej i denote the ith element of P and Ej

respectively.

Scheduling in Single Input Single Output (SIS0) Systems with Transfer

Function Errors - The The problem to be formulated here is motivated by the

problem of detecting "actuator path" failures as shown in Fig. 3-13. In this

problem, we have nearly perfect measurements of both the input to the actuator

and its output.

6C

ACTUAL
ACTUATOR

I SENSOR I

(Sm
R-3226

Figure 3-13. Measurements for Actuator Path Failures

Figure 3-14 shows the "open loop" residual generation process for linear

single-input, single output (SISO) systems (see subsection 3.2 for definition

of open-loop residuals). Although closed loop or finite memory residual proc-

esses may be considered, we consider only the open loop case since it has been

used successfully in cases where the SISO system is a stable, high bandwidth

low-pass system.
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Figure 3-14. Open-Loop Residual Generation in SISO Systems

The residual process, v(t) in Fig. 3-14, is non-zero because the true

A

transfer function from u to y is different than the model we use to produce y.

Typical model-errors are due to high frequency dynamics and nonlinearities

which cannot be easily characterized and variations in hardware (over time and

from implementation to implementation). The residual process _(t) is a non-

stationary process because the input, u(t) is nonstationary. Furthermore, the

size of the residual scales with the size of u(t). To see this, consider the

case where both the true system and the model are linear systems. In this

case, we have

where,

t

_(t) = f e(_) u(t-_) dT (3-116)
0

e(T) = h(T) - h(T)

h(T) = true-system impulse response

h(T) = model
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To design an FDI system which detects failures of the true system, we must

first characterize the residual process when no failure exists. Since, in Eq.

3-116, e(_) is not known, and in fact may vary over time and implementations

of h(t), let us characterize it by the functional relationship e(T;8) where 8

is an unknown random paramter. The parameter, 8, is the only random element

in the description of v(t). Although u(t) could be characterized in some

cases by a piecewise-stationary stochastic process, such a characterization

would be of little use since we have a perfect measurement of u.

The "size" of v(t) with no failure present can now be characterized as a

function of the complete past history of the input; i.e., {u(T), Te [0,t]}.

To see this, let us compute the mean square value of v(t) with respect to the

variations in 8. That is, if we compute;

v2 = £8{v(t)2}

where C 0 denotes expectation with respect to the distribution of 8, then v2

can serve as a measure of the possible size of the residual under no failure

and used as a basis for FDI.

To compute v2, we formally have,

E t
f

0

tt 1f f dTl dT 2 f(Tl,_ 2) u(t-T I) u(t-T 2)
0 0

(3-118)

(3-119)

whe re
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f(rl,T2 ) = _8 {e(Tl;8) e(T2;8)} (3-120)

Thus, we see that knowledge of u over the interval [0,t] and a statistical

characterization of the error impulse response function is sufficient for

computing v 2.

Unfortunately, the calculation in Eq. 3-119 is not an efficient one

since, in general, f(TI,T 2) iS not seperable (if f(TI,T 2) = fI(_I_2[_2 ) then

Eq. 3-119 amounts to the product of two linear filters). To see this, let's

consider a simple example (of no particular interest to the actuator FDI

problem).

Suppose we let e(T;8) be given by,

e(T;O) = ee -eT (3-121)

That is, the error transfer function in a first order low pass filter with

unknown cut-off frequency, 8. This might correspond to a case where the true

system is well known at high frequencies but uncertain at low frequencies.

Note that Eq. 3-121 specifies a magnitude an___dphase relationship between u and

v. Many characterizations of unmodelled dynamics presume only a magnitude

relationship with unknown phase [37]. This characterization will be discussed

subsequently.

If we denote the probability density function of 8 by p(8), then;

= f p(O) 02e-O(_l+T2) dO (3-122)f(TI,T 2)

If, in addition, we assume that 8 is uniformly distributed over the interval

[0L, 0H] , then, using integration by parts
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OH

/ 1
f(z I,T 2) = 0H_0 L

0L

02e-0('q+'r2 ) dO (3-123)

1

0H-0 L

02e-O('rl+T2) 2
J

-(TI+T2) (TI+T2) 3
e--0(TI+T2 ) (I + 0(TI+T2))

OH

%

(3-124)

There is no apparent way to separate Eq. 3-124 into a product of functions,

each involving only T 1 or T2. In addition, even this example demonstrates

the complexity of calculating v2, using Eq. 3-119.

Part of the complexity in the above formulation is due to the significant

amount of structure imposed on the error transfer function. As we mentioned

above, transfer function errors are more commonly specified in terms of their

magnitude response alone, with no knowledge available about phase. This leads

us to search for scheduling methods which are based on the magnitude (or

squared magnitude) of the Fourier transform of e(T), viz. E2(m). We can do

this using Parseval's relation as follows. Define a positive function of

frequency L(_) such that L2(_) ) E2(_) for all _ is guaranteed. Let N(_)

represent the Fourier transform of the residual sequence v(t) and U(u) be the

Fourier transform of the input u(t). Then the following relations hold:

N2(0j) = E2(0_) U2(_)

N2(00) (L2(_) U2(o_)

(3-125)

(3-126)
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and using Parsevals relation,

oo co t

f v2(t) dt < f [ f I£(T) u(t-T) dT]2dt (3-128)

where £(t) is the inverse Fourier transform of L(m). Equation 3-128 suggests

a test which will reliably reject the hypothesis that a SISO system with trans-

fer function error (i.e., error between reality and the model used to form a

residual), is operating normally. The right hand side of Eq. 3-128 says that

the input is filtered using any filter whose squared magnitude in the fre-

quency domain bounds the actual frequency domain error. The output of this

filter is then squared and integrated. This is then compared to the integral

of the squared residual. The right hand side of Eq. 3-128 is the threshold

and it is scheduled dynamically based on the temporal characteristics of the

input. Of course, in a practical system, we would deal with these relation-

ships in the discrete time domain and perform sums only over finite intervals

to ensure that the values in Eq. 3-128 remain bounded.

OTHER DESIGN ISSUES

The design of fixed sample size hypothesis tests discussed in this sub-

section have all been based on a steady state analysis of the decision statis-

tics which are used for decisionmaking. That is, only the steady state pdfs

are used to optimize parameters and compute thresholds. In using these tests

in the trigger process (see subsection 3.1), we clearly would like to minimize

the number of samples required or equivalently the bandwidth of the resulting

filter. This is because we recognize that there is a tradeoff between the

size of failures one can detect and the speed in which this detection can take

place. Some new ideas which are based on the notion of transient gain are

derived here.
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The transient gain of a filter H(_) (or its Fourier transform h(t)) is

defined as

GT(h) = sup JT(h * Y) / JT(Y)

y e L2(0,T) (3-129)

where * denotes convolution, and where

T

JT(X) = I/T f Ix(t)l 2 dt
0

In [38] JT(V), (where v is the residual vector of a Kalman filter), is

used as a trigger statistic and the "size" of JT is established for various

values of T using uniformly distributed modeling and sensor errors.

The notion of transient gain is one which may be useful in designing

trigger filters• To simplify the results which follow, we will deal with

discrete time processes and finite impulse response (FIR) filters• The dis-

crete version of Eq. 3-129 is

(3-130)

GT(H) = sup n HTY T U / N YT U (3-131)

where HT is the impulse response matrix, viz.

HT =

h0 0 0 ... 0

h I h 0 0 ... 0

h2 h I h0 ... 0

hT hT-I ..- h 0

(3-132)
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and YT t = (y(0), y(1), ..., y(T)). Now, in the design of trigger filters

(choosing H) we would like to maximize the transient response to a failure

subject to a constraint on the steady state variance of the output. That is,

given the variance of the output of this filter, we can first choose a fixed

threshold which achieves some desired false alarm rate. Of all the filters

which result in the same output variance, we would like the one which responds

as quickly as possible. Formally stated, we want to choose the (T + i)

impulse response coefficients which

max GT(h)

subject to:

h_hTt Cy h__T = 02
(3-133)

where _T is the vector of impulse response coefficients (i.e., the first col-

umn of H T) and Cy is the autocorrelation matrix for YT- The solution of this

problem requires a gradient scheme since both the objective and constraints

are nonlinear in the decision vector h T. Such schemes would be facilitated by

observing that_

GT(H) = Xmax (HTHT t) = _max (HT)
(3-134)

where %max denotes the maximum eigenvalue and _max denotes the maximum

singular value of the corresponding matrix.

Other options which are similar to the above (some of which are easier to

solve) are given below.

I. Minimize the variance of the output subject to a constraint

transient gain.

2. Minimize the variance subject to a fixed step-response transient

gain. That is, assume that y(j) is a constant in computing G T.
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.

e

This is solved by taking the filter coefficients as Cy -I times a
vector of ones. This is also the solution to the maximization of the

ratio of step response to variance of the output.

Maximize the norm of the impulse response vector, hT, subject to a

constant variance of the output. This is equivalent to maximizing

the magnitude of the output at time T subject to a unit norm input

and a constant output variance. The solution to this problem is to

take hT as the eigenvector corresponding to the smallest eigenvalue

of Cy. Note that the similarity between this result and the robust

parity check results of [24] are not coincidental since the problem

statements are effectively equivalent.

Maximize the worst case transient gain (by selecting y(j) to minimize

GT) subject to a constraint on steady state variance. That is,

select hT to

max mln GT(h)

hT y(j) : j=0, ..., T

subject to:

hT t Cy hT = o2 (3-135)

3.4 SUMMARY

In this section we have developed a general structure for FDI systems and

discussed many details associated with the design of each element of this

structure. At the top level, the FDI function is decomposed into residual

generation and decision processes. In the residual generation process, infor-

mation about normal (unfailed) system redundancy (including temporal, direct

as well as analytic redundancy) is used to form residual signals which are

well behaved under no failure conditions and which deviate in easily charac-

terized and distinguishable ways when failures occur. While Kalman filtering

methods can be used to generate residuals without an explicit analysis of

redundancy, the failure to assess redundancy and their associative errors can

result in poor performance. This is because Kalman filtering is a centralized
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approach to residual generation (using the system model as a whole) and will

tend to mix well known relationships with poorly known relationships. The

decentralized approach to residual generation breaks up the system model into

individual relationships among measured variables (static and dynamic balance

equations). These relationships can then be examined independently in terms

of their usefulness in each part of the decision process.

The decision process collects information contained in the residuals over

time by nonlnvertibly compressing the residuals into various decision statis-

tics and comparing these statistics to threshold (or to each other in some

cases). Because of the need to process residuals over time, the unknown fail-

ure onset time plays a large role in determining the structure of the decision

process. Many decision mechanisms have been proposed for dealing with the

uncertainty about failure onset. We have adopted the structure used in [14]

which consists of trigger, verify, and isolate subprocesses. The trigger

process is used as a quick response alarm to indicate the possibility of a

failure. Its thresholds are set to ensure quick detection of important fail-

ures. Furthermore, the sensitivity to all important failures are maximized by

designing a separate trigger test for each failure mode rather than using the

common practice of mixing all information together in a rejection test for

normal operation (e.g., WSSR). The verify process is used to achieve the

false alarm rate specifications by setting its thresholds to reliably reject

false triggers. The isolation process is run in parallel to the verify proc-

ess and performs binary hypothesis tests comparing all pairs of triggered

failures.

Finally, in designing the hypothesis tests which colaprise the decision

process, we defined a design procedure which involved four major steps. The
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first step was to define an algorithm structure for each hypothesis test using

a simplified "design model" which statistically describes the nominal behavior

of the residuals under each hypothesis of interest. The second step was to

select the parameters of this algorithm using averages oaken with respect to a

truth model. The truth model also statistically characterizes the residuals

under the alternative hypotheses, however, it includes variations due to model-

ing error that was neglected in the design model. Although it would be con-

ceivable to design an algorithm for the truth model in the first place, the

point of using separate models for design and analysis is to gain confidence

in algorithm robustness. Finally, sensitivity analyses are made to see how

performance varies with respect to uncertainties which are not easily charac-

terized by a statistical truth model (such as failure magnitude). Iterations

between this process and the first and second step may be necessary.
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SECTION 4

ANALYTIC METHODS OF EVALUATING FUNDAMENTAL LIMITS TO FDI PERFORMANCE

In the generic FDI design methodology discussed in subsection 3.1, we

argued that the evaluation of fundamental limits to FDI performance was neces-

sary both to determine feasibility of performing the FDI function and in deter-

mining sensitivities of performance to different system characteristics. In

this section we develop an approach for performing these analyses based on the

concept of distinguishability metrics. Such metrics were used in the design

process as an objective function for the optimization of algorithm parameters.

In this section we will assume that a statistical truth model of the observed

quantities which adequately characterizes all important uncertainties is avail-

able for every hypothesis (mode of operation). For characteristics which

can't be described statistically (e.g., failure size and signature), we will

perform a parametric analysis of performance limitations.

4.1 DISTINGUISHABILITY METRICS

The basic idea behind our approach is to evaluate the distinguishability

of pairs of hypotheses in terms of the smallest likelihood of making an incor-

rect decision based on some set of observations. This likelihood is nonzero

because each hypothesis can only be described statistically.

It is well known [32] that the decision rule which achieves the slaallest

error probability, Pe, is the maximum a-posteriori (MAP) decision rule which

achieves
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Pe = f rain [p(ZplHi), p(ZpIHj)] dZp (4-1)

Equation 4-1 is, however, not particularly easy to evaluate even using

numerical integration algorithms and even when the densities are Gaussian.

For this reason, it is useful to define measures which can be related to Pe,

but are easier to evaluate. Such measures and their application to FDI were

the topic of references [22] - [24] and have found wide applicability in areas

such as patten recognition [39], [40], control systems [41] - [43], communica-

tions [44], information theory [45], [46], and statistics [47] - [48]. We now

define some of these measures and describe some of their useful properties.

If we view the pdf of a random variable, say _, as a vector in an infi-

nite dimensional space, then the 'distance' between the two vectors (pdfs),

Pi(_) and pj(_), can be computed in a variety of ways. For example, the stan-

dard Euclidean or 2-norm is defined as

L2 = f [Pi(_) - pj(_)]2 d_ (4-2)

The Kolmogorov distance, or l-norm, is defined as

K = f IPi(_- Pj(_)I d_ (4-3)

These two distance measures, while retaining some very nice topological

properties [44], are either difficult to compute (in the case of K) or not

easy to relate to Pe (in the case of L2). In reference [24], two measures

which can be easily computed and related to Pe were identified.

J-divergence which is defined by

Jij(_) = f [Pi(_) - pj(_)1 gn-

Pi(_)

d_
Pj(_)

They are the

(4-4)
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and the Bhattacharyya distance which is defined by

i/2

Bij(_) =-£n f [Pi(C) Pj(_)] d_

Some general properties of J and B are given below.

(4-5)

i. Jij > 0

2. Jii = 0

3. Bij > 0

4. Bii = 0

Also note that neither J nor B necessarily satisfy the triangle inequality;

i.e., for i ¢ j _ k,

Jij + Jjk # Jik

Bij + Bjk ¢ Bik

The most important property of J and B is that they can be used to bound

Pe as defined in Eq. 4-1. The following relationships are derived in

[44] - [46]

1/2 - 1/2(i - 4qiq j e-2Bij) I/2 < Pe < (qiqj)I/2 e-Bij (4-6)

i/2 min(qi,q j) e-Jij/8 _ Pe < (qiqj)I/2 (Jij/4)-I14 (4-7)

with the upper bound in Eq. 4-7 valid only for Gaussian densities. In Eqs.

4-6 and 4-7, qi and qj are the a-priori probabilities associated with the

two densities Pi(_) and pj(_).
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In the Gaussian case (which is of frequent interest) both metrics are

relatively simple to compute. For example, if Pi(_) = N{mi; Ci} and

pj(_) = N{mj; Cj}, then we have

-1
F,'-..,.,,-, _-I

Bij = I/2 £n det {1/2 (Ci+C j) Ci-I/2cj-I/2 } + 1/8 (mi-mj)T h_ j (mi-m j )

(4-8)

Jij = I/2Tr{CjCi-I + CiCj -I + [Ci -I + Cj -I] [mi-mj] [mi-mj]T} - t (4-9)

where t is the dimension of _.

When the vector _ represents a time series, some other interesting

results can be derived. Let

= {z(1), z(2), z(3), ...z(N)} (4-10)

where z(k) is a stationary Gaussian vector time series. For a particular

hypothesis, say Hi, this time series is completely characterized by its (time

varying) mean sequence, mj(k), and its covariance function, Cj(k), where,

mi(k) = E { z(k) I Hi } (4-11)

Ci(k) = E {(z(j) - mi(j)) (z(j+k) mi(j+k)) t I Hi} (4-12)

The distinguishability metrics discussed above can be computed for the vector,

_, from its mean vector m_ i, and (Toeplitz) autocovariance functionmatrix C_ i,

which are functions of m i and C i in Eqs. 4-11 and 4-12, respectively. Thus,

given an N-window of observations, all of the metrics described above can be

computed. Although such analyses can be quite useful, it is also of interest

to develop measures which are not dependent on an assumed window size. This

desire leads to the consideration of asymptotic measures in which limits as N

tends towards infinity are considered.
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In [49], for example, asymptotic measures are defined for the case where

the difference between the mean sequences is persistently exciting. If this

is the case, then the (biased) sample correlation matrix of the difference

between the mean sequences exists and is defined by,

N

Rij(k) = lim (N -I) _ [mi( j + k) - mj(j + k)] [mi(j) - mj(j)] t (4-13)

N-->® j=0

Since mi(k) , Ci(k) and Rij(k) are vector and matrix time sequences, we can

take Fourier transforms element by element to obtain mi(m), Ci(m), and Rij(m).

The transformed quantities are then used to compute asymptotic distinguisha-

bility measures. For example, the asymptotic B distance, is defined by

Bij = lim Bij(N) / N (4-141
N÷_

where Bij(N) is the B distance between hypotheses H i and Hj based on the

N-window of data defined in Eq. 4-10. It is then shown that Bij can be com-

puted using a frequency domain integral. In the one dimensional case with

equal covariance functions under H i and Hj(C i = Cj = C) this integral reduces

to_

2ql

Bij = 1/4 (2_) -I f Rij (_) C-I (_) de
o

(4-15)

Some interesting properties of Eq. 4-15 are described in [49]. For example,

(Dirac) delta functions in Rij(_) can be easily handled. This corresponds to

the case where the difference between the means is a sinusoid. The sinusoid

is persistently exciting and, therefore, results in a finite limit to Eq. 4-14.

Note, however, that since Bij is finite, the limit of Bij(N) is infinite.
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In the FDI problem we are frequently interested in cases where signals

are not persistently exciting and, hence, there is a finite limit to Bij(N ).

If this is the case, then the asymptotic measure in Eq. 4-14 is zero and pro-

vides no information. We now extend the results of [49] for nonpersistent

excitation in the one dimensional case with equal covariance functions. The

general case is handled in a similar manner.

First expand Eq. 4-15 (without the limits) in terms of the difference

between the mean sequences. This gives

2w = N

N-IBij(N) = K f d_ C-I(_){ _ e-J _k N-I _
o k--0 t=0

[mi(t+k ) - mj(t+k)][mi(t) - mj(t)]}

(4-16)

Now multiply both sides of Eq. 4-16 by N-I and change summation variables

(n I = t+k). This gives

27 _ N

Bij(N) = K f dm C-I (=) _
o nl=0 t=0

e-Jaml ejmt[mi(nl)-mj(nl)] [mi(t) - mj(t)]

(4-171

Taking limits as N goes to infinity we recognize that the double summation is

just the product of the Fourier transform of the difference between the means

and its complex conjugate. Thus, we have,

2_

BijW = lira Bij(N) = K f am C-I (m) [mi(_) - mj(m)] 2 (4-18)
N+= o

which is the desired result. This equation holds when the limits exist and

this occurs only when the mean sequences have Fourier transforms. The latter

requirement implies that both mean sequences be square integrable (i.e., have

finite total energy). Thus, the limits do not exist for means which satisfy
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the persistent excitation requirement of [49]. If we do admit delta func-

tions, however, then the result is consistent with the original result in that

BijW is infinite. Following [49] and arguments similar to the above for the

vector case (again assuming equal covariance functions), Eq. 4-18 becomes,

2_

BijW = lim Bij(N) = 1/4 (2_) -I ; dm [mi(m)-mj(m)] t c-l(m) [mi(_) - mj (m)]
N-->_ o

(4-19)

EXAMPLE

Let mj = 0, and mi(k) be a narrow band process with finite energy cen-

tered near mc (and near 2_ - mc due to sampling) in the direction v i. For

example mi(k) = [EPN(k) sin(_ck)]vi where pN(k) is a pulse function of length

N (N large). Then we have,

Bij w = (E2/4) vi t c-l(_c ) v i
(4-20)

4.2 EVALUATION METHODS FOR CONSTANT DIRECTION FAILURE SIGNATURES

In this subsection we consider the problem of evaluating the

distinguishability of hypotheses of the form,

H i : z(k) = Cifi(k) + n(k) (4-21)

where z(k) is an n dimensional observation vector, n k is a stationary Gaussian

colored noise process, C i is an n dimensional failure direction, and fi(k) is

a failure signature. This problem is of interest since many FDI schemes

attempt to make decisions based on observations such as Eq. 4-21 (e.g., Yk

representing detection filter residuals; the decentralized aircraft-path

residuals to be defined in Section 5; or input disturbance estimates in the

control element FDI scheme of [50]).
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The distinguishability of two hypotheses Hi and Hj may be determined

using the metrics in subsection 4.1 when Ci is known, the covariance function

of n(k) is given and fi(k) is adequately characterized (either deterministi-

cally or stochastically). However, for the FDI evaluation problem we are more

interested in learning what characteristics of fi(k) are required to achieve

some desired level of distinguishability. Thus the methods to be developed

below will be seeking information about the "size" (e.g., total energy) and

spectral content of the failure signature which is needed to achieve a given

level of failure distinguishability.

4.2.1 Detectability

Let the hypothesis Ho, characterized by Ci = 0, convey the hypothesis

that the system is in normal operation (i.e., no failure). The ability of any

FDI system to detect H i is then computed by examining distinguishability mea-

sures between Ho and Hi . Since z(k) is a time series, we can either make use

of time domain measures by forming an N-window of measurements, or compute

asymptotic measures in the frequency domain. Both cases are considered here.

TIME DOMAIN METHOD 1

In this method we assume that fi(k) = Esi(k) and that some particular

sequence si(k) for k=l, ...N, is of interest. For example, si(k) = 1 might be

used to evaluate how large the average value of fi(k) needs to get to be

detectable; or si(k) = sin (=c k) might be used to evaluate the frequency

regions of greatest detectability. Let E be defined as in Eq. 4-10 with mean

under H i , mE i, and covariance matrix under both H i and Ho, CE. If Bd is a

desired level of detectability (determined using the bounds of Eq. 4-6, then

we can compute the value of E which achieves Bd from
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Emin 2 = Bd[m tc -Im_ ]-I (4-22)

Furthermore it is easy to see that for E 2 ) Emin 2, B is larger implying

greater detectability for "larger" failures. Note, however, that many smaller

failures may also be frequently detected by an FDI scheme. This is because

Eq. 4-22 merely gives the failure size such that both the probability of false

alarm and the probability of missed detection are small• Thus, for an FDI

test which achieves the desired PFA, smaller failures (than Emi n) could be

detected, but with less reliability (i.e., larger PMD).

TIME DOMAIN METHOD 2

In this method, we also assume that fi(k) = Esi(k) , but ask the question

How large must E be so that the worst case sequence si(k) , where si(k) is

constrained to have unit energy, is detectable? Again, using _ as defined in

Eq. 4-10, the covariance matrix under Hi and Ho, C_, is easily computed. The

mean vector is expressed by

m_ i = E CNS N (4-23)

where CN is an nN x N matrix defined by,

-Ci

0

CN=

0

and sN is an N x 1 vector defined by,

0 0 ... 0

Ci 0 •.. 0

•.. Ci

(4-24)

sNt = (si(I), -.., si(N)) (4-25)
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The worst case signature with, for example unit energy, is defined as the one

which causes B to be a minimum. Thus s N is found by solving,

min I/8 E 2 sNt [CNtC_-ICN] sN

s.t. sNts N = 1 (4-26)

The solution to Eq. 4-26 is found using Raylelgh's inequality: sN is the

eigenvector of the matrix in brackets corresponding to its smallest elgen-

value, Zmln, and the minimum is, therefore, E2Zmln • Thus, Emln 2, the smallest

value of E 2 which gives B = Bd is just,

Emin 2 = 8 B d / Zmln (4-27)

TIME DOMAIN METHOD 3

The last time domain method is directed at evaluating average limits when

the failure signature fi(k) can be described stochastically. As we will see,

this method results in extreme conservatism in terms of detectability and is,

therefore, not recommended. The extreme conservatism comes from the fact that

fi(k) is described as a zero mean Gausslan process. Although this may in some

cases be an accurate description of behavior under the "failure" hypothesis,

the utility of labeling undetectable signals (i.e., frequently near zero) as

failures is questionable.

In this case, we let fi(k) = Esi(k) be described by a first order

difference equation,

xf(k) = Afxf(k-l) + Bf w(k-l)

si(k) = Cfxf(k) + Df w(k) (4-28)
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where xf is an m dimensional state vector and w(k) is a Gaussian white noise

sequence. Using Eq. 4-28, fi(k) is a zero mean Gaussian process with autoco-

variance function Ef(k) = E2_s(k), where _s(k) is the autocovariance function

of si(k ) (computed from Eq. 4-28, e.g., see [22]). Define _ as in Eq. 4-10,

with m_ = 0 under Hi and Ho, and with autocovariances,

Eo(k) = E[z(j)zt(J +k) [ HO] (4-29)

Zi(k) = E[z(j)zt(j+k) [ Hi] = _o(k) + CiCitZf(k) (4-3o)

Plugging these statistics into Eq. 4-8 yields,

B = 1/2 Ln det { [_.ir.o-1] 1/2 + [_o_.i-1]1/2} (4-31)

where Zi and Eo are the covariance matrices of E under H i and Ho respectively.

Equation 4-31 can be simplified using Eq. 4-30 for more efficient calculation.

However, its extreme conservatism makes it a poor choice for FDI evaluation.

To see this, consider the case where N = I, Ef = 1 and z(k) is a one dimen-

sional process. For the high signal to noise ratio case (Ci2>> Eo), Eq. 4-31

is approximately

B _ 1/2 Ln [(Ci2/E o + 1)/2] 1/2 (4-32)

For a reasonable value of B (say I0) Eq. 4-32 implies that Ci must be on the

order of 109 times greater than Zo I/2 in order to be detectable! Furthermore,

the conservatism of Eq. 4-32 is not entirely due to the looseness of the guar-

anteed performance bounds in Eq. 4-6. In the one dimensional case the value

of Ci which achieves any desired Pe (for equal false alarm and missed detec-

tion probabilities) can be computed. To achieve Pe = 10-4 (corresponding to

94



ALPHATECH, INC.

about B = I0 for the upper bound in Eq. 4-6) we require that .01(Ci 2 + _o) I/2

2.5 Eel/2 (this is derived using Eq. 4-I knowing that the pdfs under the two

hypotheses cross at only two points). Thus even using more exact calculations

for the one dimensional case requires that C i be about 250 times as big as

Eo I/2 to be detectable. Although this is considerably smaller than Eq. 4-32

would indicate, it is still exceptionally conservative. _

FREQUENCY DOMAIN METHOD 1

Since z(k) is a time series, we can use the asymptotic measures described

in subsection 4. i to evaluate detectability. In none of these methods will

fi(k) be described as a zero mean process due to the discussion above. How-

ever, such methods are easily derived. In the first method, as in the first

time domain case, we assume that some aspect of fi(k) is known. To use the

frequency domain integral in Eq. 4-19, however, it is evident that only the

squared Fourier transform of fi(k) (its power spectrum) needs to be specified.

Thus, this analysis is not specific to a particular signature, but is valid

for the class of failure signatures which have the same power spectrum. Let

Sn(_) denote the spectral density of n(k), and fi(k) = Esi(k) with si(k) a

t 2unit energy signal with power spectrum ms2(_) (i.e., m s (_) dta = 1). Then,
o

to achieve Bw = B d, Eq. 4-i9 requires,

21_

Emin 2 = Bd/ [I/4(2_) -I f ms2(_) CitSn-l(_) C i d_]

o

(4-33)

*Note that in the one dimensional nonzero-mean case, calculations using B dis-

tance instead of actual error probabilities result in estimates of signature

size which are about a factor of 9 too big.
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Candidates for ms(m) include wideband processes (e.g., the Fourier transform

of e-ak, or PN(k); a pulse of length N) and narrowband processes (e.g., the

Fourier transform of PN(k) sin(_ck))- For wideband processes it may be of

interest to plot the integrand of the denominator of Eq. 4-33 vs. _ to high-

light the regions in the frequency domain which contribute most to detecta-

bility. For the narrow band processes, plots of Emi n vs. mc also indicate

frequencyregions which are highly detectable.

FREQUENCY DOMAIN METHOD 2

Paralleling the development of time domain methods above, we again assume

fi(k) = Esi(k) and find E such that the worst case signature spectrum, ms(m),

is detectable. The worst case signature minimizes Bw subject to the unit

energy constraint on si(k). Thus we must first solve,

2_

rain f E2ms2(m) citSn-l(m) Ci dm

o

(4-34a)

2_

s.t. f ms2(m) dm= 1

o

(4-34b)

Since all factors in the integrand of Eq. 4-34a are positive, the solution is

for ms(u) to be a narrow band process at the frequency for which citSn-l(m) C i

is minimum. The minimally detectable energy is then computed as in Eq. 4-33.

This solution is, unfortunately, of little use in practical problems since S n

must be estimated and, therefore, the exact frequency which results in minimal

detectability is of little interest. The dual problem to Eq. 4-34, however,

may be of interest. That is,
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2/[

rain E 2 f ms2(_ ) de

o

21T

s.t. I/4 (2w) -l f E2ms2(m ) citSn-l(m) Ci de = BdW

o

(4-35)

The solution to Eq. 4-35 is not immediately obvious. However, a similar

problem can be stated which has a simple solution. Let f(m) = E 2 ms2(m) , and

g(_) ffiCitSn-l(m) Ci. The constraint in Eq. 4-35 can now be rewritten using

inner product notation to denote the integral over the interval [0, 27], as

<f,g> = BdW (4-36)

The minimum norm function, f, which achieves Eq. 4-36 can be easily found. It

is,

f = [BdW / <g,g> ] g (4-37)

Thus, we have,

27

f*(_) ffi[CitSn-l(m) Ci]BdW/ [1/4 (2_) -I f (CitSn-l(m) Ci)2dm]

o

as the solution to

21T

rain f f2(m) de
o

21T

s.t. 1/4 (27) -1 f f(m) CitSn-l(m) Ci de = BdW
o

(4-38)

(4-39)

The energy in the signature f(k) needed to achieve Eq. 4-37 is computed from

Eq. 4-36 using

2_

Emin 2 = f f* (_) d_ (4-40)
o
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4.2.2 Distinguishability

Failure distinguishability refers to the inherent ability to distinguish

failure modes from each other (not including the no-failure mode). Although

any of the calculations discussed in subsection 4.1 provides, in principle, a

direct means for evaluating failure distinguishability , there is a problem in

that the signature energies for different failure modes mmst be specified.

One logical approach might be to use the minimally detectable energies deter-

mined from a detectability analysis such as those described above. However,

it is possible to show that such an approach does no____tguarantee that larger

failure signature energies are more distinguishable. In order to provide a

more meaningful distinguishability analysis in this regard, we define a new

distinguishability concept.

As is well known in the statistical literature, the assumption of a par-

ticular statistical behavior for an observation under some hypothesis, Hi,

allows significance only in the testing of the null hypothesis, Hi . That is,

given a model for Hi, we can only design a test which reliably rejects that

hypothesis. Now suppose we wish to define a region in measurement space which

represents a highly significant decision that the ith control element is not

failed. Furthermore, suppose we wish to define this decision region so that

the resulting test is invariant with respect to the failure signature energy

Ei •

As in subsection 3.3, let the e-significance level test for a known

signal energy (consider one sample of z(k)) be defined by

D(E i) = {Z : Pr [az(k) - Cifi(k) |2 ) UZ - Cifi(k) U2 ] _ a} (4-41)
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The E i invariant decision region is then the locus of points in measurement

space defined by Eq. 4-40 for all possible Ei, or

D = N D(E i) (4-42)

Ei

Thus, as in subsection 3.3, the decision region, D, is defined by projecting

the q-significance contour for any Ei into the null space of Ci-

We can now define the minimum signature energy needed to distinguish

failure i from failure J, El/j, as the minimum signature energy required to

achieve some desired value of a given metric (e.g., Bw) after projection into

the null space of failure J. Notice that this definition is not symmetric

(i.e., El/j ¢ Ej/i)- Furthermore, note that this analysis quantifies the

limits to performance of the "isolation" hypothesis tests discussed in subsec-

tion 3.3
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SECTION 5

CONTROL ELEMENT FDI DESIGN AND EVALUATION FOR THE B-737 AIRCRAFT

In this section, the ideas described in Sections 3 and 4 are applied to

the control element failure detection and isolation problem. Aircraft-path

and actuator-path failures are considered in independent subsystems as dis-

cussed in Section 2. For both subsystems we have assumed that all sensors

have been validated (i.e., contain only "in-spec" errors). For the actuator-

path subsystem, multiple simultaneous and sequential failures are allowed.

For the aircraft-path subsystem, only single failures are allowed. Also, no

aerodynamic effects other than those due to control element failures are

allowed (note: such effects are likely to be detected, however, isolation

performance is severely affected).

Both subsystems make use of the "trigger/verify/(isolate)" structure dis-

cussed in subsection 3.1 for handling the unknown onset-time problem. In the

aircraft-path subsystem, we have concentrated heavily on developing a formal

design methodology which allows the designer to assess FDI performance capa-

bilities and limitations as a function of both sensor noise and model uncer-

tainty. This was done to convert, as much as possible, the typical algorithm

tuning process into one of validating model error assumptions. Except for

defining threshold scheduling procedures, this has been successfully
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accomplished. For the actuator path subsystem, two separate hypothesis test-

ing algorithms were examined. The first algorithm was designed using only

static thresholds which are selected on the basis of average error budgets.

The second algorithm used threshold schedules which assumed that all error

sources could be bounded by a high-pass transfer function error.

In the remainder of this section, we will detail the design, development,

and evaluation of both aircraft-path and actuator-path control element FDI

systems. Evaluation of the algorithms was accomplished using data generated

from NASA's modified B-737 simulation. This simulation is a six degree of

freedom simulation with nonlinear aerodynamic models, realistic actuation mod-

els (high order dynamics, rate limits, cable stretch, etc.), a Dryden wind

model, and sensor errors including white noise, biases, and scale factors. In

the case of aircraft-path failures, we will also evaluate fundamental limits

to FDI performance based on flight test data obtained from NASA's Transporta-

tion Systems Research Vehicle (TSRV).

5.1 AIRCRAFT PATH FAILURE DETECTION AND ISOLATION

The aircraft path FDI problem described in Section 2 is an attempt to

characterize a very broad class of failure modes for which a single FDI system

is desired. The failure modes considered as aircraft path failures are those

failures in which the effective control value (i.e., the value of unfailed

control "deflection" which results in the same applied aerodynamic forces and

moments as the failure mode) is different than the measured control value.

Thus, any failure occurring outboard of the measured control value is consid-

ered as an aircraft path failure. This includes the traditional "partially

missing" aircraft path failure mode as well as stuck, floating, runaway, etc.,
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when these failures occur in the aircraft path. To achieve such generality in

the FDI system, specific temporal characteristics of failure signatures will

not be used explicitly. Thus, systems such as [51] are not of interest. The

OSGLR method described in [I0] provides insensitivity to failure signature

information through estimation of temporal basis coefficients. In [52] this

method was applied using standard Kalman filtering techniques to generate

residuals. However, the method is also applicable to other types of residu-

als. In our approach, we make a broad assumption that the failure signature

is coherent. That is, we assume that the signatures of important failures

remain large and of one sign throughout the length of time needed to detect

and isolate failures. This assumption leads to specific structures for the

FDI process. We then concentrated our efforts in developing analytical design

and evaluation methodologies for selecting parameters and predicting perform-

ance. In this section we detail the application of these methodologies.

5.1.1 Decentralized Residual Generation

The first step in designing a system to generate residuals for aircraft

path FDI is the assessment of the various sources of analytic redundancy which

are available.

Figure 5-I shows the interrelationships of the various elements which

describe the dynamics of a rigid body aircraft. The vector equations and var-

iable definitions are shown in Table 5-1 and are derived in [29]. All quanti-

ties are in c.g. -- centered body-axis coordinates (unless specified otherwise).

(In addition to these elements one might include relationshps between actuation

effort (hinge moment) and V, 6, _, and g as a potential source of redundancy.

However, these are typically unreliable [53].
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V,uo6 ; _ F

KEY: R-2352

FB = FORCE BALANCE

HB = HOHENT BALANCE

TD = TRANSLATIONAL DYNAMICS

RO = ROTATIONAL DYNAMICS

TK = TRANSLATIONAL KINEMATICS

RK = ROTATIONAL KINEMATICS

Figure 5-1. Generalized Rigid Body Aircraft Model

TABLE 5-1. ELEMENTS OF AN AIRCRAFT MODEL

FB: Fa = f(V w, _, 6)

MB: Ma = g(Vw, Ww, 6)

TD: m(V + _ x V) = Fa + m_

RD: I_ + m x lw = Ma

TK: P = RB I (9) V

RE: _ = H(e) -I

Fa = Aerodynamic force vector

Ma = Aerodynamic moment vector

V = Translational velocity vector

= Angular velocity vector

P = Position vector in ECEF coordinates

0 = Euler Angles

Vw = Translational velocity of aircraft
relative to air mass E V

0_w = Rotational velocity of aircraft
relative to air mass = m

= Surface deflections

= Acceleration of gravity
m = Mass

I = Moment of inertia matrix

RBI = Rotation matrix from body-axes to
ECEF axes

H = Transformation matrix (see [I0])
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Although several aircraft relationships could be considered in the resid-

ual generation process, it is the force and moment balances which provide the

most useful information about aircraft path failures. This is because these

relations are the only ones affected by failures an___ddbecause other relations

have potential for adding only uncertainty due to model error (e.g., effects

of wind acceleration on TD).

If measurements of both inputs and outputs of these relations were

available, static or memoryless residuals could be generated. For the force

balance relation, this is the case because accelerometer measurements are

available. That is, let Am be the measured specific force from three orthog-

onal accelerometers centered along the body axes. Then we have

Am = V + _ × V - g (5-1)

The force balance equation in Table 5-1 then allows the formation of an

independent estimate of these measurements from air data, angular velocity,

and deflection measurements. A set of three translationa residuals can then

be defined by,

vX

9T = 9y = Am - f(V), _, 6)/m (5-2)

9Z

For the moment balance relation, memoryless residual generation would

require direct measurement of aerodynamic moments. Since these are not avail-

able we will use the rotational dynamic relations in addition to the moment

balance equations to form finite memory "rotational" residuals as follows.

First, write a discrete time, nonlinear, time invariant state space model for

the aircraft, viz.,
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x(k+l) = a[x(k), 6(k)] (5-3)

where x(k) is the n-dimensional state vector and 6(k) is the m-dimensional

input vector. The moment balance and rotational dynamic relationships give

rise to the three components of Eq. 5-3 corresponding to the angular velocity

states, m(k). Since we have complete measurements of the states, x, and

inputs, 6, for these three equations, three rotational residuals can be

defined by,

vR ffi VQ = _(k+l) - a=[x(k), 6(k)] (5-4)

VR

where a=(-) is the component of a(.) which corresponds to the states, =.

The rotational and translational residuals defined above are clearly

decentralized in that they only use those parts of the system model which con-

tain direct information about the failures of interest. In an ideal world,

the other relations provide the information which would be necessary to opti-

mally incorporate all measurements into the residual generation process

through use of a Kalman filter. However, errors in these relationships can

make such an approach suboptimal for the failure detection problem. With the

decentralized approach we are sure that the errors in unused relations will

not have any effect on FDI performance and for those errors which do, analyti-

cal evaluation of their impact will be possible.

The use of static and finite memory residual formulations is chosen for

the simplicity of failure characterization. In particular, we see that, for a

broad class of force and moment relationships, failures will show up in fixed

directions in the residual space defined by Eqs. 5-2 and 5-4. For this to be

the case, the functions f(-) and a_(.) must be of the form,
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f(.) = fl(x ) + _ bi gi(6i ) (5-5)
l

am(. ) = al(x ) + [ digi(6i)
(5-6)

where, again, x is a vector of measureable states needed in Eqs. 5-2 and 5-4.

The failure direction corresponding to the i th control element failure in the

residual space defined by v t = (vTt , VR t) is then Ci t = (bi t , dit) • Although

Eqs. 5-5 and 5-6 may seem restrictive, they are in fact typical of standard

aircraft models (i.e., linear aerodynamic models). The details of these equa-

tions for the B-737 are now given.

The standard non-dimensional description of forces and moments referenced

to a body fixed coordinate frame takes the form

X = Q • S • CXB
(5-7)

Y = Q • S • CYB
(5-8)

Z = Q • S • CZB
(5-9)

L = Q • S • b • CLB
(5-10)

M = Q • S • c • CMB (5-11)

N = Q • S • b • CNB
(5-12)

where Q represents the dynamic pressure (in units of ibs/sq, ft.), S represents

a reference surface area (sq. ft.), b is the reference wing span (ft.), and c

is the reference mean chord length (ft.). The non-dimensional coefficients

(CXB, CYB, CZB, CLB, CMB, CNB) at any point in time are typically related to

the instantaneous values of control surface deflections, engine throttle set-

ting, relative velocity and direction of the air mass, and inertial angular
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rates. In some cases, air mass acceleration is included using angle of attack

rate, e. For our purposes we will assume that these relationships are primar-

ily linear (except in the case of the rotary terms p, q, r where total veloc-

ity is used as a divisor to obtain non-dimensional coefficients).

Thus, neglecting terms which are typically close to zero, the six nondi-

mensional coefficients are assumed to be in the following form.

c
CXB = _-_ CXq-q + CXa.a + KX + _ Cx_" _i

i i

b
CYB = CyB B + _V [Cyp p + Cyr r] + Ky + [ Cy6 6i

i i

c
CZB = CZa a +_-_ [CZq q] + KZ + [ CZ6._i

i i

CLB = CL8 B + 2_ [CLp p + cLr r] + KL + [ CL6i6 i
i

c

CMB = CMa a + _ [CMq q] + KH + _.. CM6i_ i
1

b
CNB = CN8 B + _ [CNr r + CNp p] + KN + [ CN_ .6i

i i

where,

(5-13)

(5-14)

(5-15)

(5-16)

(5-17)

(5-18)

V = total velocity (f/s)

= angle of attack (radians)

B = sideslip angle (radians)

p = roll rate (r/s)

q = pitch rate (r/s)

r = yaw rate (r/s)
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and where _i represents the II control elements including left and right aile-

rons, stabilizers, elevators, spoilers, throttles, and a rudder. All control

element values are measured in degrees except throttles which are measured in

kilopounds of thrust• Appendix A provides a derivative of the coefficients in

Eqs. 5-13 to 5-18 from linear models•

Thus, the three translational residuals are

Vx = Axm - X/m (5-19)

Vy = Aym - Y/m (5-20)

Vz = Azm - Z/m (5-21)

where Axm , Ay m, Azm are the c.g.-centered body-referenced accelerometer mea-

surements, and X, Y, Z are estimates of the aerodynamic forces (also c.g.-

centered body-referenced) obtained by using measured values of the states and

control elements in Eqs. 5-7 - 5-9, and 5-13 - 5-15. The aircraft mass is

denoted by M.

The rotational dynamic relations (neglecting cross products of inertia)

are :

Ix P + (I z - ly) RQ = L (5-22)

ly Q + (Ix - Iz) PR = M (5-23)

Iz R + (ly - Ix ) QP = N (5-24)

where Ix, ly, Iz = moments oE inertia about the body axes (slug - ft2).

Three estimates of angular acceleration are then
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. _y - _z £ (5-25)
p - ix rq + I-_

^ Iz - Ix

= ly rq + _y (5-26)

^ I x - Iy 1_
_- = qp +-- (5-27)

Iz Iz

where L, H, N are obtained from using measured values in Eqs. 5-10 - 5-12 and

5-16 - 5-18.

Using the trapezoidal rule for approximating the integrals of Eqs. 5-25 -

5-27 over a single time interval of A results in the residual equations,

Vp = p(k) - [p(k-l) +-_-- ((k) + p(k-l)]
(5-28)

and similarly for q and r. Note that if Eq. 5-28 was scaled by I/A, these

residuals will have units of angular acceleration (r/s2).

Finally, for completeness, we note that preprocessing of the accelerom-

eter data and e and B vane measurements may be necessary to obtain the c.g.

centered, body-referenced measurements required in the above. Letting

(£x, £y, £z) denote the coordinates of any sensor in the desired c.g. centered

body axis coordinate frame, then accelerometer compensation takes the form,

AxCOmp = Axm - [_£x(r 2 + q2) + £y(pq - r) + £z(pr + q)]

Ay C°mp = Ay m - [£x(Pq + r) - £y(p2 + r2) + £z(r q - ;)]

AzCOmp = Az m - [£x(rP - q) + £y(rq + ;) -£z(q 2 + p2)]

(5-29)

(5-30)

(5-31)
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Compensation of the a and B vane measurements takes the form,

aC°mp = am + _x(q/V) - Ey(p/V)

BC°mp = Bm - _x(r/V) - £z(P/V)

(5-32)

(5-33)

Derivation of these equations appears in [29].

Equations 5-19 through 5-21 and 5-28 and the associated roational dynamics

and forceand moment balances provide the information necessary to generate the

six desired residuals. Unfortunately, for thls project, the nondimensional

coefficients of the B-737 aircraft were not available. Linear models were

available, however. Recognizing that there is a one-to-one correspondence

between the nondimensional coefficients in Eqs. 5-13 - 5-18 and any linear

model, it is possible to derive the nondimensional coefficients from these

linear models. This derivation is given in Appendix A along with a comparison

of actual nondimensional coefficient values for two flight conditions.

5.1.2 Detectability of Aircraft Path Failures Using Flight Test Data

The availability of flight test data from NASA's B-737 aircraft provided

a unique opportunity for realistic evaluation of the feasibility of performing

control element FDI using aerodynamic models of the aircraft. This is because

many errors which are difficult to simulate are excited during actual flight

(e.g. wing bending, nonstationary inputs) and realistic values of errors which

are normally accounted for (e.g. sensor noise) are present. Unfortunately,

sufficient time was not available to perform a complete analysis. Such

analysis would require a flight test program to guarantee that all important

error sources were excited over a full range of operating conditions. Thus,

this section is meant to demonstrate the application of the concepts developed
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in Section 4. The results which follow should be considered optimistic due to

the fact that only a limited amount of data was processed. In particular, we

used only the data from the first 50 seconds of TSRV flight R380, Run 12JR.

During this interval the aircraft performed a mild turn maneuver at approxi-

mately constant altitude and throttle setting. Mild turbulence is believed to

have been present. Figures 5-2a to 5-2q show traces of interesting quanti-

ties for this maneuver. The flight condition used to obtain linear models

corresponding to this data is defined by:

V = 160 KIAS

h = 3500 ft

Gear up

Flaps = 15°

= 0

The evaluation of detectability presented here is aimed at evaluation of

limits to performance using the decentralized residuals described in 5.1.1.

Although the general framework presented in Section 4 would, in principle,

allow an assessment which is independent of residual generation mechanization,

such an assessment would be much more difficult due to the complex nature of

the effects of failures on the measured quantities. In contrast, the effects

of failures on decentralized residual is easy to characterize resulting in a

greatly simplified analysis. Furthermore, decentralized residual generation

was required for further development and this analysis proved useful in the

FDI design procedure.

The basic premise behind the results of this section is that the residu-

als could be characterized by the alternate failure (and no failure) hypotheses
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Figure 5-2 (a-q). Flight Data From TYRV R380, Run 12JR
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described in Equation 4-21. That is, failures show up in fixed directions,

modulated by a failure signature, and the errors could be described by a

colored noise process whose statistical behavior is independent of the system

status (i.e., the same for all hypotheses). This latter property is critical

in enabling us to infer the statistical behavior of the residuals under failed

modes from the data obtained from normal flight. To see that this is a rea-

sonable assumption consider a model for the decentralized residual of the

form,

P

v(k)= no(k) + [
i=1

A

(Ci-Ci)_iE(k) + Ci[6iE(k) - _im(k)] (5-34)

where q0 is a random noise term and where, for each of the p control elements,
^

_im is the measured deflection, 6iE is the effective deflection, Ci is the

vector of dimensional control derivatives used in generating residuals, and C i

is the actual dimensional control derivative. Under the jth failure hypothe-

sis (j=0 indicates no failure) we have

6iE = _im for i # j (5-35)

6iE # _im for i = j (5-36)

The random noise term, q0, takes into account the effects of sensor noise as

well as modeling error in the formation of the residuals and is, therefore, in

general, a nonwhite (and generally nonstationary) process which must be char-

acterized. The term (6i E - _im) in Eq. 5-34 is termed the failure signature

and is denoted by fi(k). The failure signature is important because when it

is large, failures are observable. Furthermore, when fi(k) is large, the
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undesirable effect on the aircraft is most pronounced so that we must have a
A

control system which is tolerant of the resulting disturbance vector Ci fi(k)

when fi(k) is small. The results of this section quantify "small" in terms of

failure detectability.

Let us now define the behavior of the residuals under no failure by a

stochastic process, n(k), vlz.,

p ^

H o : v(k) = n(k) = _ (Ci-Ci)6im(k) + n0(k) (5-37)
i=l

A simplifying approximation to Eq. 5-34 for the ith failure hypothesis (i_O),

is then,

^

v(k) = n(k) + Ci fi(k) (5-38)

Equation 5-38 assumes that the statistical behavior of 6iE, under the ith

failure hypothesis, is the same as 6im and that this statistical behavior is

independent of the failure mode. Clearly, there are many specific failure

mechanisms in which this is not the case. The assumption is nevertheless,

very useful in our general failure mode context. For any specific failure

mechanism, one must decide whether the results derived here are conservative

or optimistic due to this approximation. The advantage of Eq. 5-38 is that

the process n(k) is observable from flight recorded data (during normal

flight) and can, therefore, be realistically characterized.

Having justified the model of Eq. 4-21 for the decentralized residuals we

now evaluate the detectability of control element failures using the asymp-

totic measure Bw defined in Section 4. The procedure is as follows.

I. Compute the six residual signals from Eqs. 5-7 through 5-33 using

data recorded during flights of the NASA TRSV.

I17



ALPHATECH, INC.

.

.

o

Compute estimates of the power spectral density (PSD) matrix for the
six dimensional residual process.

Determine the (dimensionalized) failure directions from the aircraft

model.

Determine the smallest signature energies, for each control element

failure, which are required to make specific signature spectra detec-

table. Plot signature energy versus frequency for narrow band signa-

tures and determine total signature energy for a broadband signature.

RESIDUAL GENERATION

Figures 5-3 through 5-8 show the decentralized residuals computed using

TSRV data sampled at 20 Hz (the figures show a lower sampling rate). Sensor

compensation (see 5.1.1) was used to accommodate lever arm effects and other

sensor validation, averaging, and scaling procedures were used (see Appendix C.

Next to each residual is its sample autocovariance function (ACF). The sample

ACF is computed from,

N-_mlR(m) = 1/N [u(n) - "_1 [,o(n+m) - "_1t (5-39)
n= l

N

= I/N _ _(n) (5-40)
n=l

for lags m=0, I, ... i00. For negative lags we use the property R(m) = Rt(-m).

Note that R(m) is a biased estimate of the underlying ACF but typically has

smaller mean square error (see [59]). Also, for the 50-second data set sam-

pled at 20 Hz, N=IO00. The ACFs shown in Figs. 5-3 to 5-8 are the diagonal

elements of R(m). There are several salient features of the residuals which

are evident from the figures. First, all of the residuals have significantly

nonzero means. This is expected due to the inaccuracy in predicting the basic

aerodynamic forces and moraents of the airframe and due to the nonzero average

values of many of the measurements coupled with inaccuracy associated with the
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corresponding coefficients. Secondly, there is a nearly white component as

evidenced by the near discontinuity at m=0. This component is due to elec-

tronic sensor noise and due to discretization error. The third error which is

evident is a high frequency oscillatory error. The frequency of this error

differs between residuals and may be due to vibration of the inertial plat-

form. The oscillation frequencies vary from about 4 Hz to less than I0 Hz.

Wing bending probably plays no part in these errors since the lower frequency

oscillations are in the x and y residuals. In the roll residual, a damped

oscillatory error at about 3 Hz may be due to wing bending. Finally, in many

of the residuals, one or two first-order-like errors are evident. The time

constants of these errors are around one second. These errors are almost cer-

tainly due to the excitation of parametric errors in the aerodynamic model by

the (forced) motion of the aircraft.

POWER SPECTRAL ESTIMATION

The qualitative modal analysis discussed in the previous paragraph sug-

gests that the estimation of the spectral density matrix ought to be accom-

plished using some of the more advanced time series methods (e.g., see [54]).

However, time did not permit full investigation of these methods for the vec-

tor case. Therefore, spectral densities were estimated using the Blackmun-

Tukey procedure (i.e., the discrete Fourier transform, DFT, of R(m)).

I00

Sn(_ = _ R(m) e-J m_ (5-41)
M=-I00

for we [0, 27].

elements which must be real). Also we have the property Sn(_+_) = Sn(m-_) H

where H denotes complex conjugate transpose. Figures 5-9 to 5-14 show the

diagonal elements of Sn.

Note that Sn is, in general, complex (except for the diagonal

That is,
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The residuals we have generated typically have a large nonzero mean over

any meaningful interval of interest. It is typical, however, to assume that

this mean is zero when estimating (or modeling) power spectra. The tacit

assumption is that for any interval of data, one can eliminate the mean value

of the process and characterize only the deviations from that mean (assuming

that the measured mean is actually the statistical mean). However, for our

purposes we wish to characterize the low frequency energy which is indicated by

the presence of the nonzero mean in the residuals. In the estimation of the

autocorrelation function, it is typical to either remove the mean and then add

in v vT to R(m) or to perform what is known as a circular correlation [55]

(i.e., assume that the observed sequence is periodic such that v(k+N) = _(k)).

Both of these approaches address the problem that, for large nonzero mean

processes, the computations given for R(m) in Eq. 5-40 result in a triangular

autocorrelatlon sequence (which does not accurately reflect the, presumed,

theoretical sequence) and, that because we only have estimates of the autocor-

relation over a finite window, the resulting power spectral estimates may have

negative values near (and sometimes not so near) zero frequency when _ is

large.

To get around these problems and still characterize the very low fre-

quency behavior of the residuals, we assume that the observed mean value

really represents a single sample from a filtered low frequency noise

sequence. That is, since

_ 1 N

= - [ v(j ) (5-4Z)

N j=l

we know that most of the high frequency energy in v will not have an impact on

when N is large. If we assume that the only component of v which can effect

v has a spectrum of
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SLF(8) = G(l-a2)/ {(l-a cos(B)) 2 + (a sin(8)) 2} (5-43)

then one can show that E{_ 2} is approximately equal to G as long as -in(a) <<

2_/N. Now since we have only one sample of _ (for each window over which we

wish to estimate the power spectrum) it is difficult to compute a meaningful

statistical average. Therefore, we will assume that the observed value of

represents a typical value and model the low frequency energy in each residual

using Eq. 5-43 with G ffi_2. In practice, we have chosen -in(a) = 0.6/N. Note

Note that with typical values of v and N, SLF(0) is very large; however, this

is consistent with the expectation that for very low frequency noise, signals

with very large total energy will be needed to achieve detectability. The

spectra $4(8) are then added to the spectrum in Figs. 5-8 to 5-13 to evaluate

detectability.

FAILURE DIRECTIONS

^

The failure directions, CI, of Eq. 5-38 are given by the dimensional

derivatives of each control element. Defining the six dimensional residual

vector as vT = (_x, _y, _z, Vp, Vq, Vr), failure directions are given by,

x y z p q r

Left Stabilator .21E-I .0 -.25 .12 E-I -.36 E-I .88 E-3

Right Stabilator .21E-I .0 -.25 -.12 E-I -.36 E-I -.88 E-3

Rudder .0 .20 .0 .15 E-I .0 -.17 E-I

Left Elevator .99 E-2 .0 -.12 .56 E-2 -.17 E-I .51E-3

Right Elevator .99 E-2 .0 -.12 -.56 E-2 -.17 E-I -.51E-3

Left Aileron .II E-I .18 E-2 -.13 .12 E-I -.47 E-2 .96 E-3

Right Aileron .ii E-I -.18 E-2 -.13 -.12 E-I -.47 E-2 -.96 E-3

where the numbers are given in acceleration units per degree of deflection.
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DETECTABILITY EVALUATION

To evaluate detectability, we considered two types of failure signatures:

broad-band and narrow band. For narrow-band failure signatures, we can use Eq.

4-33 to determine the minimum signature energy needed to achieve some desired

value of Bw for various frequencies of excitation. Figures 5-15 through 5-21

plot Emi n versus frequency for each control element using Bd = 3 and the power

spectral density estimates described above. As expected, large amounts of

energy at low frequencies are needed because of the large mean values for the

residuals. The plots also indicate that aileron and elevator failures may need

large signature energies at high frequencies. This is probably due to the high

frequency errors evidenced in the roll residual (Vp).

6.e

2.0

I I 1 I I I'
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FREQUENCY R-3390A

Figure 5-15. Detectability of Narrow Band, Left Stabilator

Failure Signatures Versus Frequency

127



ALPHATECH, INC.

I0.0

B.O

w

6.0

4.0

I I I I I I

2.$

0.0_

0.0 fsl2

FREQUENCY R-339IA

Figure 5-16. Detectability of Narrow Band, Right Stabilator

Failure Signatures Versus Frequency

lo.e,

@.0

4.0

-':'. 0

0.0

0.0 fs/2

FREQUENCY R-_)gZA

Figure 5-17. Detectability of Narrow Band, Rudder Failure

Signatures Versus Frequency

128



ALPHATECH, INC.

6.¢J

_J

o¢

4._

2.ee

I I I I I I

fs/2

FREQUENCY R-3393A

Figure 5-18. Detectability of Narrow Band, Left Elevator

Failure Signatures Versus Frequency

6.0

w

I.a.I

4._

I I I I I I

-".0

fs/2

FREQUENCY R-3394A

Figure 5-19. Detectability of Narrow Band, Right Elevator

Failure Signatures Versus Frequency

129



ALPHATECH, INC.

1E' ._3

L,ul

I I I I I I
8.')

6.0

4._

2.0 _j-

$. =3 fs/2

FREQUENCY e-ngsA

Figure 5-20. Detectability of Narrow Band, Left Aileron

Failure Signatures Versus Frequency

1 (,. '3

8, II_ I I I I I I

6._

0 0

FREQUENCY

I 1 I ,

fs/2

R- 3396A

Figure 5-21. Detectability of Narrow Band, Right Aileron

Failure Signatures Versus Frequency

130



ALPHATECH, INC.

To examine broadband failures signatures, we assume that the failure

signature could be represented by,

(l-a 2)
mj(_) = (5-44)

(l-a cos _0)2 + (a sin _)2

By using Eq. 5-44 in Eq. 4-33 and performing the required integrations numeri-

cally, we can determine the minimum broadband signature energies required for

detection. Table 5-2 shows the results with a = .4 (- 8 r/s bandwidth) and

BWd = 6. Notice that the results are not symmetrical with respect to surfaces

on either side of the airplane. This is most likely due to the fact that the

errors which give rise to our power spectral estimates were not symmetrically

excited during the interval of data we used.

TABLE 5-2. DETECTABILITY OF BROADBAND FAILURE SIGNATURES

Control Element

Total Signature

Energy (degrees)

Left Stabilator 0.44

Right Stabilator 0.45
Rudder 0.62

Left Elevator 0.95

Right Elevator 0.98
Left Aileron 1.85

Right Aileron 1.92

The values in Table 5-2 are notably small since they represent total sig-

nature energies (i.e., the integral of the squared signature over time). Even

signatures whose total energies are factor of i0 greater than those in Table

5-2 would be acceptable. A signature energy of I0 degrees can be achieved by

a constant deflection of 0.5 degrees for one second at the 20 Hz sample rate.

However, these numbers should only be treated as lower limits to performance

(best case) for a very specific failure signature which is known and for a
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perfectly known power spectrum. A more in-depth analysis might include pulse-

like signatures since they may be bore representative of actual signatures and

might utilize PSD estimate from a broader set of flight data. Detectability

in terms of pulse height versus pulse width could also be plotted. Further-

more, distinguishability of failures should be determined using the methods

described in subsection 4.2.2.

5.1.3 Aircraft Path Decision Process Design

The goals and assumptions to be used in this design were detailed in

Section 2. These included:

I. No multiple failures

2. Single flight condition

3. No additional aerodynamic failure effects

4. No detailed assumptions about failure signature models

5. Validated sensors

The control elements we will consider as possible failures in this design are

left and right engines (LT and RT), ailerons (LA and RA), horizontal tail (LHT

and RHT), and rudder (R). The horizontal tail is a fictitious surface which

represents both stabilizer and elevator surfaces. This is done because our

preliminary evaluation of distinguishability indicated that same-side elevator

and stabilizer surfaces are indistinguishable based on force and moment bal-

ance magnitudes along (i.e., without using temporal signature information).

Aircraft path engine failures are those occurring outboard of the "engine

actuator" output measurement. Since we have chosen (Section 5.2) the engine

actuator path as the path from the throttle command to the engine pressure

ratio (EPR), aircraft path engine failures are those in which EPR follows the

throttle command but the resultant thrust is inconsistent with EPR (e.g.,

thrust _eversers deployed).
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ALGORITHM STRUCTURE

The overall structure of the decision process will include trigger, ver-

ify, and isolate test procedures as discussed in Section 3.1. This structure

is chosen as a trade-off between computational complexity and performance in

solving the unknown onset time problem. For the aircraft path control element

FDI problem, this structure takes the form shown in Fig. 5-22. The decentral-

ized residuals defined in subsection 5.1.1 are the only inputs to this deci-

sion process. All decisions are, therefore, based on the relative sizes and

spectral characteristics of these six residuals. The trigger process is a

system monitor which is used to indicate the possible presence of abnormal

behavior. In order to maximize the sensitivity of the trigger process to

individual control element failures, separate trigger tests are used for each

element. That is, each test is designed so that i__fa detectable failure of

control i occurs, then its corresponding trigger test will "pass." Note that

the conclusion that control i is failed if its corresponding trigger passes is

invalid since such a conclusion is based on the converse of the previous sen-

tence. One consequence of this structure is that it is possible to have

redundancy in the trigger tests. For example, if a single residual is the

only source of information for several triggers, then the resulting trigger

tests will be all identical.

The verify and isolate processes are initiated when a trigger test passes.

The verify process is initiated by the trigger process and is used to reject

false triggers. The verify process, therefore, plays a major role in achiev-

ing the desired overall false alarm rate. The isolate process runs in "paral-

lel" to the verify process and is responsible for making decisions regarding

the identity of the failed control element. In principle, only the implied
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ambiguity group resulting from a set of triggers (not the union of all trigger

tests which pass) needs to be "isolated." However, for simplicity, all verify

and isolate tests will be initiated following any passed trigger test for the

current design.

The matrix of verify and isolate tests in Fig. 5-22 indicates that we

will be using sequential tests which provide "votes" which indicate which of
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any pair of system hypotheses is more likely (i=O indicates normal operation;

the control elements are indexed by i=l, ..., 7). The full matrix of isola-

tion test flags, lij , take on values of 1 when j is more likely than i, 0 when

i is more likely than j, and 2 when the sequential test has not yet completed.

When the i,j th test is completed and no decision can be made, lij and lji are

both set to O.

To declare that the jth control element has failed, Vj=I and lij=l for

all j_i. That is, the jth column of the matrix in Fig. 5-22 must contain all

l's. Only one such column is possible due to the palrwise comparisons. Other

information is available from this test matrix and some alternate uses are

described in [56].

HYPOTHESIS TEST DESIGN DETAILS

The generic decision-process design procedure discussed in subsection 3.1

will be applied to this problem using the theoretical developments of subsec-

tion 3.3 The first step in this procedure is to develop structures for the

hypothesis tests indicated in Fig. 5-22 based on a design model. For this

model, we will assume that over the time interval needed to detect and iden-

tify failures, the failure signature is coherent (i.e., of one sign) and that

this interval is substantially shorter than the time constants of some assumed

very low frequency residual errors. We also assume (for defining test struc-

tures) that another residual error is broadband (i.e., white) noise associated

with sensor noise and discretization errors. These errors will be modeled as

Gaussian processes whose covariance characteristics are the same under all

modes of operation.
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After defining the hypothesis test structures from the above design model,

the parameters of those tests must be chosen. To do this, we will hypothesize

a statistical truth model for the residual error which is more detailed than

the design model description. This model is then used to optimize parameters

and perform sensitivity analyses. In general, such a model might take the

form,

xr(k ) = Ar xr(k-I ) + Br wr(k-I ) (5-45)

v(k) = Cr xr(k) + Dr wr(k) (5-46)

where v(k) is the six dimensional residual, xr is the nr dimensional "truth-

state" vector and w r is a white noise vector with covariance matrix Qr- In

the design procedures to be discussed below, we will assume that the residuals

are independent and that each residual can be represented by the sum of a

white noise term, nw, a first order low pass markov process, nL, and a first

order high pass Markov process, nH. The white term represents sensor noise

and discretlzaton errors. The low pass term represents "in-band" errors (i.e.,

those errors which are excited in the same frequency range as the failure sig-

natures). The high pass term represents unmodeled dynamics. Thus we have,

vj(k) = nwJ(k) + nLJ(k) + nHJ(k)

xLJ(k) = aLJxL j(k-1) + (l-aLJ)wL(k-l)

xHJ(k ) = aHJxHJ(k-l) + (l-aHJ)wH(k-l)

nLJ(k ) = xLJ(k )

(5-47)

(5-48)

(5-49)

(5-5o)

nHJ(k) = wHJ(k) - xHJ(k) (5-51)
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The parameters of this model (cutoff frequencies and noise variances) are

computed from an error budget which is described in subsection 5.1.4.

Prefilters - The use of colored, stochastic residual errors in the design

model indicates that a "prewhitener" is necessary for each hypothesis test

[32]. Ideally, this prewhltener is a multivariable filter which whitens and

decorrelates the residual process (note that we don't really expect to be able

to achieve a white process in reality since the residual errors are only mod-

eled as stochastic; the true errors are, of course, nonstationary). While a

multivarlable filter may represent an optimal procedure for the design model,

it, in general, has one major drawback for the current problem. In general, a

multivarlable filter can (depending on the nature of the frequency errors)

take residuals which have failures that show up in fixed directions in resid-

ual space and transform them into signals which have failures that show up in

time varying directions depending on the temporal characteristics of failure

signatures. To retain the desired insensitivity to specific failure signa-

tures, we will first project the residuals into a subspace which is appropri-

ate for each test (to be based, in part, on the fixed failure directions) and

then perform a one dimensional whitening operation. This structure will sac-

rifice performance in comparison to an optimal algorithm when the frequency

characteristics of the residuals are substantially disparate, but guarantees

insensitivity of every test to the detailed failure signature characteristics

(note that results in the previous section indicate that residual errors are

very similar and so little performance degradation is expected).

To choose the characteristics of the one dimensional "whitener" for each

test, first note that the design model which includes low frequency and broad-

band errors implies that a filter with a high pass characteristic is needed.
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Rather than hypothesize some detailed power spectrum and solve Weiner-Hopf

equations [32] (or equivalently design Kalman filters for some detailed state

space residual model), we will simply choose a high pass filter (HPF) struc-

ture and select its cutoff frequency. To do this, first note that the cutoff

frequency must be higher than the bandwidth of the low frequency errors of the

residuals (the very low frequency errors which vary with, e.g., velocity

changes). Secondly, the time constant of the HPF must be larger than the FDI

interval (so that the assumed coherent failure signatures are not washed-out).

As a first cut, we will assume that all six residual errors are the same. The

(very) low frequency error bandwidth is probably no higher than 0.I r/s. The

failure signatures are probably not coherent for more than about 2-5 seconds

and the desired (longest) FDI interval is about two seconds which is consis-

tent with the length of time that the signature is coherent. As a result, a

first order high pass filter with cutoff frequency of 0.5 r/s is preliminarily

chosen for each test. This frequency may change for tests which require

longer FDI intervals (e.g., because the signatures may have only lower fre-

quency content).

Triggers - The structure for the trigger test is based on the projection-

HPF structure discussed above, and

i. the assumption that the projected/filtered residual error is white,

and

2. the assumption that the projected/filtered failure signature is

constant.

These assumptions are reasonable since we assumed that tile failure signature

is coherent and that the time constant of the high pass filter is much longer

than the FDI interval. The resulting test takes the form,
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k-_T+lST = _(j ) >< tT

j=k

(5-52)

which is just a moving window average of the projected and high-pass filtered

residuals. This is shown in Fig. 5-23. The absolute value function takes

into account the uncertain failure sign (see subsection 3.3). As discussed in

subsection 3.3.1, this test will reliably detect coherent failures of some

minimal magnitude and all failures which are larger than this minimal value.

The parameters of this test must now be designed. For these purposes, it is

convenient to think of the HPF as coming before the projection operation in

Fig. 5-23 since the first cut design has all HPFs (i.e., for each test)

identical.

TRIGGER FLAG
FOR i'th
FAILURE

R- 3387A

Figure 5-23. Structure of Trigger Tests - Time Variant

The parameters of the trigger test are the projection operator, the win-

dow length, NT, and the trigger threshold. The selection of these parameters

are based on the following concerns. The projection vector, Pi, must be maxi-

mally sensitive to the i th failure direction while reducing the effect of real

errors (i.e., those in a truth model) on S T . Thus, the choice of Pi depends

on the choice of N T and a statistical model of the filtered residuals. The

threshold, tT, must be chosen to achieve a desired false trigger rate and it

is, therefore, a function of Pi, NT, and the statistical model. The window
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length should be as short as possible to minimize trigger delay, but should be

long enough so that important failures signatures will be detected. The spec-

ification of minimally detectable signatures is dependent on the choice of Pi,

NT, and tT and the assumed statistical model.

Given Eqs. 5-47 through 5-51, the statistics of ST can easily be computed

as a function of Pi and NT and the tradeoff between the false trigger likeli-

hood and minimally detectable (bias) failure for various values of tT deter-

mined. To select these parameters we proceed as follows.

I.

2.

Choose N T as the longest allowable trigger time for the i th failure.

Choose Pi to maximize the distinguishability of the i th failure by

maximizing the d 2 metric for the random variable ST as a function of

Pi assuming that the failure direction is C i and that the HPFed sig-

nature is a constant. That is, compute the mean and variance of ST

under the hypotheses H o and H i from

_(sr I Uo) = 0 (5-53)

E(ST I Hi) = NTPitCifs (5-54)

Var (S T I Ho, HI) = PitlfPi (5-55)

k-_T+lwhere If is the variance of ( 9(j)), and fs is the magnitude of

j=k

the constant failure signature (in units of the corresponding control

element).* Using the results of subsection 3.3, we have

Pi = zf- Ici (5-56)

*El can be computed by forming a state variable equation for the (vector) fil-

ter corresponding to the desired sum and solving the discrete time Lyapunov

equation [57]. This can be done by component by components when the compo-

nents of _(j) are uncorrelated.
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3. Select the threshold to achieve a desired false trigger specifica-

tion. For example, to achieve PFT smaller than I0-_, we need

tT = 3 Var(ST). (5-57)

4. Find the value of fs which achieves some specified miss probability.

For example, to achieve PMT smaller than 10-3 , we need

(E(ST I Hl) - tT) = 3 Var(S T) (5-58)

5. Determine which elements of the projection vector can be made equal

to zero. This step is designed to enhance the robustness of the

algorithm in the case where actual errors are larger than the truth

model, The idea is to remove those residuals which contribute only

marginally to detectability as measured by the size of fs needed to

achieve some PMT- The procedure is iteratlve. The projection is
restricted to have nonzero elements in only a subset of residuals and

steps one to four are carried out. If fs does not increase substan-

tially (e.g., no more than one percent greater than its value with

all residuals) then the residuals which are not included do not con-

tribute to detectability and can be removed from that test.

The five steps just described provide a precise methodology for determin-

ing the values of the parameters of the trigger test in Fig. 5-23. Of course,

these values depend highly on the statistical truth model assumptions, and,

therefore, one must be careful in interpreting the results for nonstationary

errors. For example, if Eqs. 5-48 to 5-52 are derived by considering observa-

tions of real errors during many different flying modes, a high degree of con-

fidence in the resulting design may be allowed. In the remaining designing

methodologies, we will also utilize Eqs. 5-48 to 5-52, and, therefore, the

same comments apply.

Verify Test Design - The structure of the verify test is similar to the

trigger test in that a "prewhitening" high-pass filter, projection operation

occurs first. Assuming once again that the projected and filtered residual is

zero mean and white during normal operation and nonzero mean with the same

additive white noise during a failure, the optimal sequential probability

ratio test takes the form,
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k k

Sv(k) = I [ GAy(J)I - [
j=kf j=kf

GD > tV ---> Verify passes

< -tV ---> Verify fails (5-59)

The test is started when a trigger occurs (i.e., at time kf) and completes

under the conditions in Eq. 5-59 or when a time limit, NV, is reached. Figure

5-24 illustrates this test.

r- VERIFY FLAG
,L _ FOR i'th

FAILURE.OD 

R- 3388A

Figure 5-24. Structure of Sequential Verify Tests

The parameters of the verify test which must be chosen are Pi, GA, GD,

tv, and NV. For a given value of tv, GD controls the speed at which false

triggers are rejected and GA controls the speed at which failures are detec-

ted. The relationship between GA and GD determines what failure sizes will

tend to result in a passed verify test. As discussed in subsection 3.3.1,

failure signatures greater than some minimally detectable value will be detec-

ted in shorter times by this test. As in the trigger test, Pi is chosen to

maximize the sensitivity to failure i and minimize the effect of residual

errors on the test. The tradeoffs which must be made in the design of a

sequential test are similar to those in fixed sample size tests (PFA, and PMD

versus failure size) except that we must include a probability of making no

decision for tests which end in such a conclusion at their time limits.
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Unfortunately, as we have indicated, the relationship between these probabili-

ties and the test design parameters is very difficult to compute when there is

a mismatch between the design and truth models. Thus, we must make use of

heuristic methods for test design. One such method was discussed in subs,c-

tlon 3.3 and will be expanded here. The method proceeds as follows. Note

that all expectatons are taken with respect to the pdfs defined by the truth

model given in Eqs. 5-47 to 5-51.

I. Choose a maximum sample length NV. Since the verify process is

designed to validate triggers, Nv - NT is a reasonable choice.

. Choose Pi to maximize the distinguishability of the ith failure by

maximizing the d2 metric for the random variable Sv(Nv) as a function

of PI assuming that the failure direction is Ci and that the HPFed

signature is a constant. Note that unlike the trigger test we must

specify a particular time at which d2 is evaluated because the sequen-

tial test is a time varying test (i.e., it is triggered). The equa-

tions for choosing Pi are identical to those for the trigger test and

if NV - NT, then the value of Pi is also the same.

. Find the smallest value of E(yIH i) which makes the fixed sample size

test of length NV reliable; where reliability is measured in terms of

d 2 (large values of d 2 imply high reliability, see subseciton 3.3.1).

Set GA equal to this value and set GD = GA2/2. This choice implies

that failure signatures which result in average values of y which are

larger than GA/2 tend to drive the sequential test to its positive

threshold and those less than GA/2 tend to drive it to its negative
threshold.

. Determine thresholds which result in low probabilities of false alarm,

missing a minimally detectable failure, and making no decision. To

accomplish this, consider the ideal SPRT. Let the desired detectable

mean be m, and the process, y, be white with variance o2. Then from

[33] we have GA = m/o 2, GD = m/(2o2), and tV = -Ln[(PM)/(I-PF)] , where

PM and PF are upper bounds on the desired missed detection and false

alarm probabilities. An interesting point in the test is when

E(Sv(k) IHi) equals tV (note that the symmetry of the test implies that

this is the same point as when E(Sv(k) IHo) equals -tv). Denote the

value of k for which this is true by k t. Then it is easy to show that

the d2 metric between the hypothesis of zero mean and the hypothesis

of mean m (with additive white noise) for Sv(k t) is just 2t V. We now

use this information to select thresholds for test Eq. 5-59 using the

truth model distribution.
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.

4a) Find k t such that d 2 for Sv(k t) = -2Ln[(PM)/(I-PF)] (assume that

the parameters of the test are given by steps two and three and

that the hypothesis H i includes a mean of minimally detectable

magnitude; i.e., E(yIH i) = GA.

4b) Set tV to make E(Sv(kt)IHi) = -E(Sv(kt)IHo) = tv, viz.

tV = k t GA2/2 = k t GD.

As in the trigger test, an iterative procedure to zero projection

elements which contribute little information to the test may follow.

Note that this may be unnecessary if NV = NT since the projections

are then the same as those of the trigger test.

Isolation Test Design - The isolation tests are also started when a trig-

ger occurs and completed when either a decision or a time limit, NI, is

reached. The isolation tests must have the property that failures which are

larger than some minimal value should result in faster decisions. To achieve

this we will use the failure magnitude invariant tests described in example

three of subsection 3.3.2. In these tests, the projection operation we need

to specify is orthogonal to one failure and maximally sensitive to another.

Ideally, two "rejection" tests for each hypothesis pair would be implemented.

However, to avoid some computational complexity, we will only perform one test

for each hypothesis pair. As for the verify tests, the isolate test structure

is based on the SPRT for detecting a constant in the projected and filtered

residuals with additive white noise. The structure is shown in Fig. 5-25 and

takes the form,

k k

Sl(k) = I [ yi(t)l - I I _j(t)l > tl -->

t=kf t=kf

test i over j passes

test j over i fails (5-60a)

< -t I _> test j over i passes
test i over j fails (5-60b)
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ISOLATION FLAG
FOR FAILURE i
vs. FAILURE j

R-3389A

Figure 5-25. Structure of Sequential Isolation Tests

The parameters of the isolation test are the two projection operations

Pi/j and Pj/i (both assumed to be unit vectors), tl, and the time limit N I.

The projections are unit vectors because choosing otherwise would bias the

test towards detecting smaller mean values in either Yi or yj. (Note, such a

case may be desirable since the average values of the corresponding control

element which achieve equal size failures in Yi and yj could be different).

The projection Pi/j is orthogonal to failure direction j and sensitive to

failure direction i, and conversely for Pj/i" The threshold, tl, and the time

limit, NI, control the error likelihoods and the probability of making no

decision (since "no decision" will be the conclusion if neither Eq. 5-60a nor

5-60b is true when k=kf+Nl). The sequential nature of this test, again, makes

the relationship between the test parameters and the test goals difficult to

compute. Therefore, a heuristic procedure similar to that used in the verify

test is used. The procedure is described as follows.

I.

2.

Choose a maximum sample length N I.

Choose the projection Pi/j to maximize the d 2 metric for the quantity

kf+N I

( Z yi(t)) subject to the constraint Pi/j t Cj = 0, and similarly

t=kf

for Pj/i"
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m

3. Find the smallest values of s = E(Yi) = E(Vj) which make the fixed

sample size test of length NI based on SI(N I) reliable where relia-

bility is measured in terms of d 2. To compute d 2 for SI(NI) we have,

E(SIIHo) = NIS (5-61)

E(sIJHj) = -NIs (5-62)

t

VarCSllHi, Hi) _ (Pi/j If Pilj) + (Pj/i If Pj/I ) (5-63)

kf_N I N Nwhere Zf is the covariance of v(t), where v(t) is the HPFed

t=kf

.

De

residual vector, and where the inequality is due to neglecting the

eovariance between the absolute value terms in Eq. 5-60 (note that

this inequality may give rise to some conservatism in the design of

the isolation tests. A tighter bound would substract 2Pi/j EfPj/i

from 5-13).

Find the value k t at which d 2, for Sl(kt) , is equal to -2 Ln[Pe/

(l-Pe)], (Pc is a lower bound on the desired probability of error).

Set t I = kt_ (is E(SI(kt)IH i or Hi) = tI for failures which make

E(TilHi) or E(TjIH) equal to s.

Iterate on steps two through four to determine which residuals con-

tribute little information to decision reliability. This is done by

examining the increase in the average values of the failure signature

required to achieve s for both failure modes. That is, let

t

fi = s / (Pi/j Ci) (5-64a)

t

fj = s / (Pj/i Cj) (5-64b)

A residual may be removed from the test (its projection zeroed) if, for exam-

ple, the resulting value of (fi + fj) is no bigger than I.I times ito value

with all residuals considered.
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5.1.4 Detailed Design and Test Results

In this subsection, we present a detailed design of an aircraft path con-

trol element FDI system using the design procedures discussed in subsecion

5.1.3, evaluate its expected performance and demonstrate its capabilities

using simulation data from NASA's nonlinear B-737 simulation. This subsection

starts wlth a discussion of error budgets for use in the statistical truth

model of Eqs. 5-47 to 5-51. Preliminary detectability results based on this

error budget are computed by designing trigger filters for each of the seven

control element failures considered as potential failures (left and right

engines, ailerons and horizontal tails, and the rudder). Horizontal tail is a

fictitious element used to represent elevator or stabilizer since these sur-

faces are indistinguishable. Several design iterations are then discussed

qualitatively ending with the final error budget and design figures. Results

of testing the resulting FDI algorithm using data from NASA's simulation are

then presented. These results include false alarm checks and detection/isola-

tion checks for various maneuvers and failures and a short investigation of

alternative algorithm structures and threshold schedules. The subsection then

concludes with a discussion of the results and conclusions about the FDI algo-

rithm an___ddthe design procedure.

ERROR BUDGET ANALYSIS

For the design procedure described in subsection 5.1.3, a statistical

truth model taking the form of three independent error sources for each resid-

ual was required. The three error sources consisted of a white noise term, a

first order low-frequency term and a first order high-frequency term. An

error analysis is now used to determine the bandwidths and energies in these

processes.
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All of the error analyses to be used here are based on a linearization of

the residual equations. Table 5-3 shows the dimensional derivatives which

comprise this model. Constant terms and velocity terms are neglected because

they only contribute to very low frequency errors which are washed out by the

"prewh$tenlng" high pass filter. Both elevator and stabilizer surfaces are

listed separately since they may not always be used proportionally in the con-

trol law, and spoiler panels are also listed since they may also be used.

TABLE 5-3. DIMENSIONAL DERIVATIVES

e(dell) It(degls) p(desls) q(degls) c(desls) Tl./TIt(ki bs) SUSit(deg) EL.It=It(des) AIJAIt(dell) It(des) SPL./SIPId

0 .0_0,30'9 0 .342 .02/. I. .0CR89 .0113 0 -.0|81_

.0131 .0372 "%00179 .202 _.0185

-.00355 -.00474 °o 248 -. 116 -. 133 0 .133

- .0367 .0126 z.O02[ z.Oll9 ±.005S6 _'.0t18 .0147 .;.-013

-.0113 .00620 -.036 -.0167 -.0047.31 0 .0019;

- .00267 - .00300 z.Ot24 -'.000883 z.O00S06 _.000955 - .OlTA ;.002

_x (fc/s2} .576 0

_y (f¢/s 2) - .663

_z (lois2) -3.60

_p (rls _) - .0829

_q (r/s _) - .0327

_r ( _ls2 ) .0[$9
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White Noise Budget - The white noise term represents errors due to sensor

noise and discretization of the sensor measurements. The total variance of

the white noise term is computed by taking the root sum square (rss) of the

contributions of each measurement to each residual. That is,

o2 . = c.z.o2
_1 _ 1] _1

(5-65)

where Cij represents the sensitivity of the ith residual to the jth measure-

ment and oj is the standard deviation of the corresponding measurement noise.

(Note that accelerometer measurements and angular acceleration computations

are also taken into account in Eq. 5-65). Table 5-4 shows the sensor noise

values used in this study.

TABLE 5-4. SENSOR NOISE BUDGET

Measurement o Units

.4 degrees

8 .4 deg

p .02 deg/s

q .02 deg/s

r .02 deg/s

TL/TR .06 klbs

SL/SR .i deg

R .I deg

EL/ER .i deg

AL/AR .I deg

SPL/SPR .I deg

Ax .32 ft/s/s

Ay .32 ft/s/s

Az .32 ft/s/s
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_2

The resulting white noise budget (i.e., the Unwi in Eq. 5-65 with the Cijs in

Table 5-3 and o2 of Table 5-4) is shown in Table 5-5.
J

TABLE 5-5. WHITE NOISE BUDGET

Measurement o Units

X .39 ft/s/s

y .42 ft/s/s

z 1.5 ft/s/s

p .035 r/s/s

Q .017 r/s/s

R .012 r/s/s

Low Frequency (LF) Budget-The "low" frequency errors to be modeled are

mostly due to parameter errors; i.e., errors in Cij of Eq. 5-65. These errors

are modulated by changes in the measurements yj which multiply Cij in the

(linearized) residual generation equations. The first parameter to be speci-

fied for the LF errors is the cutoff frequency for each residual. The param-

eters aLF i are then determined from

-_LFi(At)

aLF i = e (5-66)

where _LF i are the cutoff frequencies in radians/sec and At is the sample

time. There are several ways in which the cutoff frequency could be computed.

For example, examination of the closed-loop transfer functions (TFs) for the

control law in use would indicate the frequency ranges in which each measure-

ment may be excited. For the control law in [58], for example, transfer

functions begin to roll off from anywhere between .2 r/s and I0 r/s. Such an
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analysis indicates that more than a single LF error term may be needed since

the different transfer function bandwidths can affect a single residual. In

spite of this fact, the dominant TF roll off frequency is about 2 r/s. Since

this is consistent with the covariance functions observed in subsection 5.1.2,

we will use _LF i = 2 r/s for each residual.

The magnitude of the LF errors in each residual are specified in terms of

the total variance of the process nLF i. Since these errors are mainly due to

parametric errors, we must translate a specification of each parameter error

into the total variance of the corresponding LF error process. There are sev-

eral ways in which this can be accomplished, however, in every case, some

notion of a design envelope is required.

The design envelope is introduced in order to determine the potential

size of the contribution of any parametric error to the residuals. The design

envelope amounts to a specification of the largest variations of each measure-

ment in the bandwidth of interest. Since the HPF washes out errors below

.5 r/s and the LF bandwidth is 2 r/s, the bandwidth of interest is [.5,2] r/s.

Table 5-6 shows the design envelope used in this project. Note that we

assumed that spoilers are not used in the control law (but are used in the

residual generation process, thus affecting the white noise budget). These

numbers were determined from representative simulations of the aircraft

response to various maneuvers using the control law of [58].

The total variance of each LF term is now computed as follows.

specify the maximum variation (in percent) for each coefficient Cij.

worst case error for each residual and then divide by three to get the total

standard deviation of the corresponding LF term. That is,

First

Find the
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TABLE 5-6. DESIGN ENVELOPE

Measurement Max Variation Units

a 5.0

5.0

p 20.

q I0.

r I0.

TL/TR 3.0

SL/SR I0.

R I0.

EL/ER I0.

AL/AR I0.

SPL/SPR 0.0

10.

Ay 2 •0

Az 15.

degrees

deg

deg/s

deg/s

deg/s

klbs

deg

deg

deg

deg

deg

ft/s/s

ft/s/s

ft/s/s

1

= _ I ACij yjmax Ii j
(5-67)

where ACij is the worst case error in Cij and yjmax is the corresponding mea-

surement's design envelope. The division by three is used because the stand-

ard deviation represents a typical value and we used a worst case analysis in

summing errors. Furthermore, the design methodology detailed in 5.1.3 utilized

measures in which error probabilities are roughly equal to a 30 significance

level. Thus, it is expected that the worst case LF errors will just barely

cause decision "errors" (actual errors or no decisions) to be made in the

hypothesis testing procedures. For five percent errors in every coefficient

and the design envelope of Table 5-6, the LF residual errors are given in

Table 5-7.
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TABLE 5-7. PRELIMINARY LF ERROR BUDGET (I-oVALUES)

Measurement o Units

X 0.096 ft/s/s

Y 0.I0 ft/s/s

Z 0.47 ft/s/s

P 0.033 r/s/s

Q 0.024 r/s/s

R 0.0077 r/s/s

At this point it is worthwhile to compare the values in Table 5-7 to the

control derivatives in Table 5-3 to get some idea of detectability. For exam-

ple, we'd expect the pitch residual to play a major role in detecting elevator

failures. However, in order for the effect of an elevator failure to be reli-

ably detected, it should be about six times greater than the i-o value of the

corresponding LF error (d2 = 6 ---> Pe = 10-4)" This would imply a need for a

an average deflection of 8.6 degrees! Although smaller failures could be

detected, this is the minimum which achieves the desired reliability. Thus,

it appears that the design envelope may be too conservative. More will be

said about this in subsequent discussions.

High Frequency (HF) Budget - High frequency errors in the residuals may

be caused by neglected sensor dynamics and neglected flexure modes. For this

study, we assumed that only the first-asymmetric and first-symmetric wing

bending modes contribute to high frequency error. Furthermore, we assumed

that these modes are excited above about 15 r/s.

The first order high pass Markov process described in subsection 5.1.3 is

a poor model for the effects of these errors. This is true for two reasons.
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First, the frequency shape does not correspond to the "peaky" nature of the

real errors, and second, the power spectrum defined by the cutoff frequency of

15 r/s (with the sample period of .05 sec.) is virtually the same as any other

spectrum with cutoff frequency above about i0 r/s. The latter effect is due

to the specific realization of the HF errors which in the limit (as _LF--> =),

looks like a one time step lag. Due to these shortcomings, and to the lack of

wing bending models in the simulation to be used for testing purposes, the

final design will be based on no HF errors. Nevertheless, it is instructive

to see an example of HF error budget modeling.

For the first asymmetric wing bending mode, the primary residual affected

is _p. The dynamic errors associated with this mode are excited mostly by

differential aileron motion and somewhat by rolling motion due to rudder

deflection. Assuming that the major contribution is due to differential aile-

ron, we can define the total variance in the HF error in _p by

opHF = 1 i Cp_ A A_A max I
3

1

= - (.012)(20) = 0.08 (5-68)
3

Similarly, for the first symmetric wing bending mode, the primary residuals

which are affected are Uq and Uz- The HF errors in both residuals are excited

by collective aileron deflection and by vertical wind gusts. Assuming that

vertical wind gusts result in a change of _ of no more than five degrees the

total variance of the resulting HF errors is,
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OqHF = ! [IC q_A E_A + I Cqma_ _max I ]
3

1
= - [(.005)(20) + (.033)(5)] = .088 (5-69)

3

1 max

Oz HF = - [ I Cz_A E_A
3

I + [ Cz_ _maxl]

1
= - [ (.13)(20) + (3.6)(5)] = 6.9 (5-70)

3

DESIGN ITERATIONS

Several design iterations involving changes to the LF error specifica-

tions were made before a final specification was utilized in a full scale

design. A short diary of these iterations is given here. In every design

iteration it is assumed that the maximum length for a test is one second

(Nma x = 20) and that a first order HPF with cutoff frequency of 0.5 r/s is

employed as a preprocessor.

The first design iteration utilized the error budgets developed above to

design trigger tests. For the one second maximal trigger window length, pro-

jections were computed, false alarm thresholds were set to achieve (nominally)

PF = 10-4 (i.e., at 3o[ST(20)]), and the average values of control "deflection"

required for reliable detection (i.e., I-P D = 10-4 for Gaussian statistics)

were determined. This information is shown in Table 5-8. The projections are

computed without any attempt to zero useless components (see subsection 5.1.3).

Also, the aileron projections are incorrect due to a transcription error in

the design software data. The detectability level is the average value of

control deflection required for reliable detection (as defined in Table 5-8.
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TABLE 5-8. AVERAGE VALUES OF CONTROL DEFLECTION REQUIRED TO ACHIEVE I-PD=I0 -4

(SIGNATURE "SIZE" 60 [ST(20) ])

CONTROL TL/TR SL/SR EL/ER AL/AR R

Projection

(For left

side where

different)

DETECTABILITY

LEVEL

X .089 .013 .013 .017 0

Y 0 0 0 .001 .020

Z 0 -.006 -.006 0 0

P .012 .17 .17 .16 .061

Q .068 -.97 -.97 -.96 0

R .99 .16 .16 .21 -.99

1.97 klbs 3.2 deg 6.4 deg 6.9 deg 2.3 deg

All these values are quite large, as expected from preliminary comparisons of

control derivatives with the LF error budget. It is deemed that these values

are not satisfactory.

The only way that detectability levels can be reduced is by restricting

the envelope of operation such that low frequency errors are reduced. This is

obviously not a satisfactory solution by itself. However, the use of thresh-

old scheduling permits us to reduce the nominal envelope and achieve the same

false trigger alarm rates by scheduling thresholds during periods where errors

are expected to be large. The resulting detectability levels are, of course,

only valid for flight within the nominal envelope and deviations from this

envelope will cause thresholds to be increased and detectability levels to

increase.

We first considered eliminating the largest errors from the LF budget.

This then implies that schedules which are a function of the corresponding

measurelnents will be necessary. The largest errors are due to coefficients of:
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I. e for Vx

2. 8 for Vy

3. e for Vz

4. 8 and p for Vp

5. SL/SR for Vq

6. r and B for Vr

.

Setting the errors in these coefficients equal to zero results in a smaller LF

error budget and detectability levels of

TL/TR : 1.4 klbs

SL/SR : 1.7 deg

EL/ER : 3.4 deg

AL/AR : 3.6 deg

R : 1.5 deg

These detectability figures are more acceptable.

The last design iteration was accomplished after observation of the size

of the residuals generated by processing simulation data from NASA's B-737

simulation. The observed residuals during a mild climbing turn maneuver were

consistent with the maximum LF (model) errors used in the previous error bud-

get. However, during roll, pitch and yaw doublets, were substantially (in

magnitude) larger than what would have been predicted by this budget.

Since we ignored the largest errors in the previous budget, one explana-

tion of the observations is that it is these errors which are being excited

and should be accounted for by threshold scheduling. However, the temporal

characteristics of the residuals are not correlated with the coefficient

errors which were ignored in this budget. Thus, some other means of develop-

ing reasonable error budgets is necessary.
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To expedite our further work, a final design was created using an error

budget based on observed errors. Using i-o values corresponding to 2/3 of the

maximum LF error observed during the climbing turn maneuver, we expect that

errors which are twice as large as those observed during this maneuver to be

The standard deviations of the LF errors used in theadequately handled.

final design are,

X : .20

y : .033

z : .20

p : .020

q : .0050

r : .0034

ft/s/s

ft/s/s

ft/s/s

r/s/s

r/s/s

r/s/s

These budgets are larger than the previous design iteration for X, Y, Z, and P

residuals and smaller for Q and R residuals. The resulting reliable detecta-

bility levels for the triggers (now with useless projection elements zeroed)

are,

TL/TR : 1.8 klbs

SL/SR : 1.0 deg

EL/ER : 2.0 deg

AL/AR : 5.6 deg

R : 1.5 deg

Table 5-9 shows the "optimized" trigger projections. Notice that for detect-

ing aileron failures, several residuals are required. This is due to the low

overall effectiveness of the ailerons and to the fact that their effectiveness

is spread amongst many axes. The use of only the r residual for rudder detec-

tion and only the q residual for horizontal tail detection is consistent with

158



ALPHATECH, INC.

TABLE 5-9.

CONTROL

OPTIMIZED TRIGGER AND VERIFY PROJECTIONS FOR FINAL BUDGET

HORIZONTAL TAlL

TL/TR SL/SR & EL/ER AL/AR R

Projection

± indicates

sign for

left/right

controls

X .011 0 0 0

Y 0 0 0 0

Z 0 0 -.006 0

P 0 0 ±.189 0

Q 0 1.0 -.905 0

R +I .0 0 ±.380 I.0

qualitative expectations, as is the use of both x and r residuals for aircraft

path engine failures.

The procedures for designing verify and isolate tests described in sub-

section 5.1.3 were followed and projections, thresholds, and distinguishabil-

ity levels computed. Table 5-10 summarizes the distinguishability results.

Each entry in the table represents a particular isolation test. The first

number corresponds to the average control deflection needed for the test to

"pass" (pass means that the test decides in favor of the control identified by

the column heading) and the second number corresponds to the average deflec-

tion needed for the test to "fail" (fail means that the test decides in favor

of the control identified by the row heading). The largest of these numbers

represents the overall distinguishability level for each surface and is shown

at the right in Table 5-10. The tests corresponding to the largest values are

highlighted.

Finally we note that the detectability and distinguishability levels are

substantially larger than those determined in subsection 5.1.2. This is

because the error budgets used in the design process were substantially larger
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TABLE 5-i0. DISTINGUISHABILITY LEVELS FOR ISOLATION TESTS

RT LHT RHT R LA RA

OVERALL

DISTINGUISH-

ABILITY

LEVELS

LT 1.5 / 1.5 1.8 / .68

RT

LHT

RHT

R

LA

1.8 / .68

1.8 / .68 _/Q Q/ 3.5 1.8 / 3.9 1.9 klbs

1.8 / -68 Q/Q 1.8 / 3.9 G/ 3.5 1.9 klbs

Q /Q .62 / 1.3 2.4 /Q 1.2 / 5.5 3.7 deg

--- .62 / 1.3 1.2 / 5.5 2.4 / 6.0 3.7 deg

...... 1.4 / 3.4 1.4 / 3.4 1.7 deg

.......... 4.3 / 4.3 6.0 deg

than the observed values and because the FDI algorithm was purposely not

optimized for the statistical (truth) model used in the evaluation process.

SIMULATION RESULTS

Simulations of a modified B-737 aircraft were performed at the NASA

Langley Research Center and the required data were recorded on magnetic tape

and delivered to ALPHATECH for use in simulating the FDI algorithm. The NASA

simulation is a full six degree of freedom nonlinear simulation with nonlinear

aerodynamic coefficients, accurate actuation models, sensor errors, and turbu-

lence simulation using the Dryden spectra [59]. A total of 41, 60-second,

simulation runs were made encompassing many categories of tests. For aircraft-

path failures, these categories included:
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I. False alarm checks with three "doublet" maneuvers and a climbing

turn, with and without turbulence and sensor noise,

2. Detection checks for totally missing control surfaces, with and

without turbulence and sensor noise, and

3. Detection checks for varying degrees of partially missing failures

with and without turbulence and sensor noise.

In all of the runs, the control law defined in [58] was used.

The results to be presented next are for the climbing turn maneuver.

Discussions of performance during the doublet maneuvers follows• Investiga-

tions of alternate algorithm structures (threshold scheduling and forced deci-

sions) are presented next and we conclude with a discussion of the lessons

learned.

Climbing Turn Results (No Failure) - Simulation data of the climbing turn

maneuver with no failure were processed by the FDI algorithm. The climbing

turn maneuver is accomplished by commanding pitch and bank angles (regulated

by the control law of [58]). The commands are given by

At I0 sec 8c = 7.5 deg/sec and _c = 1.5 deg/sec

At 14 sec 8c = _c = 0

At 21 sec 8c = -7.5 deg/sec and _c = -1.5 deg/sec

At 25 sec 8c = _c = 0

Three cases were examined: no turbulence or sensor noise, sensor noise but no

turbulence, and both turbulence and sensor noise present. During each of

these runs, no false trigger was ever recorded.

The maneuver begins at ten seconds• Figure 5-26 shows the attitude,

angular rates, and linear accelerations of the aircraft during the maneuver.

Figures 5-27 through 5-32 show the six residuals for the turbulence and sensor
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Figure 5-26. Normal Aircraft Response During Climbing Turns
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noise case. Figure 5-33 shows the trigger test for the left aileron.* Note

that an initiation transient due to large low frequency errors causes the

trigger to cross its threshold, however, an "inhibit" flag prevents decisions

from being made for the first four seconds (two time constants of the HPFs) of

operation. Other triggers look similar to Fig. 5-33. Low frequency errors

which are excited during the maneuver are clearly evident, however, the design

methodology's selection of thresholds account for the impact of these errors.

-9.40

-9.60

-9.80

-10.00

LA TRIG

I t I I I I I

_{11_1_ _ TRIGGER 7

._.i ......... _. THRESHOLD

5.0 10.0 15.0 20,0 25.0

TIME (SECS)

30.0 35.0 40.0

R-4442

Figure 5-33. LA TRIG

*The scaling on all hypothesis test plots in this section do not correspond to

the design data given in the previous subsection. This is because standard

log-likelihood-ratio software was used to generate the simulation results.

These log-likelihood-ratio tests are functionally equivalent to the ones

specified above.
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Climbing Turn Results (Detection of Totally-Missing Failures)- For these

results, totally missing failures were similated (Effectiveness = 0 at 5.0

seconds before the initiation of the climbing turn maneuver at ten seconds).

The simulations were run without turbulence but with sensor noise. No air-

craft path engine failures were available. Both elevator and stabilizer fail-

ures were simulated, although no attempt was made to distinguish between the

indistinguishable modes (same side elevator and stabilizer). Table 5-11 shows

the trigger times and isolation times for each failure mode. Note that trig-

gers for elevator and stabilizer failures occur before the maneuver because

they are providing nonzero forces and moments to the aircraft during straight

and level flight.

TABLE 5-11 TRIGGER AND ISOLATION TIMES FOR TOTALLY MISSING SURFACE FAILURES

Failure Trigger Isolate

Mode Time (sec) Time (sec)

LS 6.15

RS 6.25

LA 10.9 11.70

RA 10.9 11.55

R II.i0

LE 5.4 (First) Out of time

(ambiguity group = LHT/RHT)

RE 5.4 (First) Out of time

(ambiguity group = LHT/RHT)
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Figures 5-34 through 5-39 show the residuals for the rudder failure case.

The trigger, verify, and isolate tests are shown in Figs. 5-40 to 5-47.

Notice that the last isolation tests to decide are the hardest ones (as judged

by Table 5-10), namely, R/RT and R/LT.

The elevator failure modes are not isolated (to the corresponding hori-

zontal tall mode) during this run. This is due to the fact that the most dif-

ficult test (LHT/RHT) can not decide by its time limit. Figure 5-48 shows the

LHT/RHT isolation test during both left and right elevator failures. Notice

that triggers occur frequently and that in the greater majority of cases, the

isolation statistics are heading in the correct direction. Examination of the

elevator position indicates that its average value within the FDI bandwidth

(.5 r/s to 6 r/s) is about six to seven degrees. Comparing this to the 7.4

degrees needed for distinguishability (Table 5-10; a factor of two times hori-

zontal tall requirement due to 50 per cent effectiveness of elevator with

respect to stabilizer), we see that the totally missing elevator failure for

this maneuver is only marginally detectable (i.e., the likelihood of missing

it is larger than desired). To see if, in fact, this failure mode is a criti-

cal failure, Fig. 5-49 shows the aircraft response during this failure.

Comparison of Figs. 5-49 and 5-26 indicates that, in spite of the missing

elevator, the climbing turn maneuver is successfully accomplished with little

performance degradation. Thus, the qualitative assessment of this failure is

that, for the control law being used, it is not severe.

Finally, Table 5-12 shows the trigger and isolate times for varying

effectiveness levels of left aileron failures. The results are as expected.

Smaller failures result in longer isolation times. When the failure is small

enough, triggers occur, but isolation decisions can not be made (in this case
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due to the inability to verify the failure). When the failure is exception-

ally small, no triggers are recorded.

TABLE 5-12. TRIGGER AND ISOLATE TIMES FOR LA FAILURES DURING CLIMBING TURN

LA Failure Trigger Isolate

Size Time (sec) Time (sec)

100% 10.9 11.7

80 11.3 12.15

60 11.65 (Flrst) 16.60

40 12.15 (First) Verify Fails

20 None None

Doublet Maneuvers - Several doublet maneuvers were simulated to test the

algorithms reaction to severe maneuvers with a broad spectrum of excitation

frequencies. The doublet maneuvers are defined by the following pitch and

bank angle commands.

Pitch Doublet: At _ I0 sec 8c = 5 deg

At ~ 15 sec 8c = -5 deg

At _ 25 sec 8c = 0 deg

Roll Doublet : At ~ I0 sec 8c = 45 deg

At ~ 15 sec 8c = -45 deg

At _ 25 sec 8c = 0 deg

These runs were made with no turbulence and sensor noise was added in a post-

simulation processing function (i.e., not fed back to the commands in the con-

trol law). Figures 5-50 to 5-55 show the residuals for the roll doublet with

no noise.
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During the pitch maneuver with no failure, several LHT triggers occur,

but the verify test either runs out of time or indicates a false trigger.

Figure 5-56 shows the LHT trigger and verify tests for this case. For the

roll doublet, triggers of every control element occur at one time or another,

however, failures are not identified because the verify tests either run out

of time or indicate a false trigger.

Examination of the residuals during these maneuvers indicates that the LF

errors are substantially larger than those budgeted in the design. Thus, the

results are not unexpected. In fact, it is surprising that in spite of the

many false triggers, no failures are incorrectly declared. Apparently, the

verify tests perform their function of declaring false triggers quite well

during these maneuvers.

Forced Decisions - One of the options which was discussed in subsection

3.3 regarding the design of sequential tests was the possibility of making a

fixed sample size decision when a sequential test's time limit is reached. It

would be expected that smaller failures could be detected in this case, but

that the likelihood of false alarms during severe maneuvers (e.g., the doublet

maneuvers) would increase. Since i00 percent missing elevator failures could

not be detected during the climbing turn maneuver, we decided to examine the

results of this case when isolation decisions are "forced" at the time

limits.

The forcing of decisions is accomplished by comparing the isolation sta-

tistic Sl(Nl)(see 5.1.3 for definitions) to zero. If it is larger than zero,

the isolation test "passes" (decides in favor of Hi) , and if it is less than

zero, the test fails (decides in favor of Hj). Figure 5-48 indicates that
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this procedure should work very well in the majority of trigger cases for the

climbing turn maneuver. Simulation results for this case result in both left

and right elevator failures being detected and isolated (to the corresponding

LHT or RHT mode) by t=6.4 seconds. In the case of left elevator failures, the

LHT/RHT test passes due to the forced decisions and for the right elevator

failure, the LHT/RHT and RHT/R tests pass due to the forced decisions.

To see the impact of forced decisions on false alarm performance, the

roll doublet was executed with no failures. Since many triggers occur, the

likelihood of making an incorrect decision should be larger when isolate test

decisions are forced at their time limits. However, no incorrect failure

identifications are declared for this case. Part of the reason for this per-

formance is that verify test decisions are not forced. Thus, many false trig-

gers are indicated due to verify tests being unable to decide at their time

limits. If verify decisions were also forced, it is possible that false

alarms could have been declared.

Threshold Scheduling - Methods for scheduling both fixed sample size

tests and sequential tests were discussed in subsection 3.3. These methods

were applied to the aircraft-path FDI system to see if false triggers during

severe maneuvers could be avoided.

Basically, threshold scheduling is accomplished through the use of fail-

ure insensitive estimates of upper bounds on the size of the residuals due to

errors which were not accounted in the nominal design. In the beginning of

this subsection, we noted that improved "nominal" performance (in terms of

detectability levels) could be achieved by reducing the design envelope and

scheduling thresholds so that periods of potentially large error do not cause
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incorrect decisions.

of the form,

Thus, a natural choice of scheduling parameters would be

Ei(k) = _ I Kij Yj l (5-71)

J

where j is summed over the measurements which were ignored in the error budget

and Kij represents an upper bound on the error in the corresponding dimen-

sional coefficient. (Note that since these errors represent errors in the

residuals, and the residuals are hlgh pass filtered, the "error terms" must

also be hlgh pass filtered). Unfortunately, the results obtained with such a

procedure are not adequate. Figure 5-57 shows the LHT trigger test for the

pitch doublet maneuver with no noise or turbulence. The threshold schedules

correspond to flve percent errors in the coefficients which wereignored in

the error budget. Clearly Eq. 5-71 does not characterize the errors which are

being experienced during this maneuver.
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Severalattempts were made to find the proper signals upon which thresh-

old scheduling could be based. These included the use of deflection measure-

ments, acceleration measurements, angular rates, and others. No combination

was found which satisfied the requirement of eliminating false triggers during

all doublet maneuvers. More investigation of these issues is, therefore,

necessary. However, we note that in the search for appropriate threshold

schedules, it was observed that errors in the longitudinal residuals may be

correlated with _. Since no _ term was modeled in the residual generation

equations, it is possible that this is an important source of error•

Discussion - There are several conclusions about the aircraft-path FDI

algorithm and its design methodology which can be drawn from these tests•

Broader conclusions about the entire effort are given in Section 6. The

conclusions drawn here are based on the results which have been presented as

well as a more detailed analysis of several simulation results.

In general, we feel that the aircraft path FDI algorithm performed quite

well, and as expected, under conditions for which it was designed• It per-

formed surprisingly well during conditions in which errors were substantially

larger than those included in the design procedure's error budget•

Room for improvement, of course, still exists, and several comments in

this regard are given below.

I. Although no engine failure tests were run, examination of throttle

commands indicates that some engine failure modes (e.g., stuck: in

the aircraft path) may produce lower frequency signatures than the

other failure modes• In order to accommodate such modes, it may be

desirable to reduce the bandwidth of the HPF only for tests involving

the engine failures•

2. Increased sensitivity to failures and greater flexibility in the

design of isolation tests may be achievable if the full matrix of
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isolation tests (i.e., "pure" rejection tests) is implemented. This

is as opposed to the combined test described by Fig. 5-25.

Decreased decision delays may be achievable by starting the sequen-

tial tests prior to the trigger time. This process would require

storage and processing of residuals over the "rollback" interval.

The disadvantage of such an approach is that the same errors which

might create false triggers could then be present in the verify tests

(i.e., the verify test is not an independent test).

In keeping with the desire to make the verify test independent to

reduce false alarms, we could reinitialize the HPFs at the trigger

time. Although this would remove the effect of large LF errors which

Cause false triggers from the verify test, it would also remove the

effect of failures. Continued excitation during the sequential test

interval is then required. This procedure might be most effective

when a "rollback" interval is used.

The FDI interval and the length of time in which the failure signa-

tures remain constant are close enough to warrant investigation of

noncoherent processing schemes. That is, trigger, verify, and iso-

late tests might perform better if they were based on sums of pro-

jected and squared residuals.

The sequential test design procedure seems to produce a relatively

conservative choice of thresholds when errors are within the budget.

This conclusion is based on observing that, in cases where failures

are not correctly detected, the isolation tests which run out of time

are clearly heading in the direction of a correct decision. Some

further refinement and/or analysis of the current design procedure is
desirable.

When high frequency unmodeled errors are present, it is possible that

the likelihood of making incorrect decisions early in a sequential

test could increase. If adequate high frequency error models are

used in the design procedure, the thresholds will increase to accom-

modate this. However, an alternative scheme which might allow

greater sensitivity in the sequential tests would be to start the

sequential test with large thresholds and reduce them as the high

frequency errors become less important. No formal theory or heuris-

tic design procedure exists for such a concept and if important, the

concept should be investigated further.

More work is needed to define meaningful threshold schedules for

operation of the algorithm during severe maneuvers.

The moving window average nature of the trigger tests is a very

inefficient implementation of a low pass filter (LPF). It was chosen

on the basis of the optimal fixed sample size hypothesis tests.

Other LPF filter structures which achieve similar noise rejection and

perhaps have a better transient response with less computation may be
of interest.
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5.2 ACTUATOR PATH FDI ALGORITHM DEVELOPMENT

Two distinct actuator path FDI algorithms were investigated for this

project. The first algorithm is a "fixed" or constant threshold algorithm

which maintains a desired false alarm rate during worst case model error at

the expense of reduced failure sensitivity during all phases of operation.

The second algorithm uses the threshold scheduling concepts developed in sub-

section 3.3 to achieve reduced failure sensitivity only during times when

large error is expected. This latter approach was demonstrated on only two

surfaces (left and right aileron) because errors other than those assumed in

this approach were evident in the other surfaces. The development of both

algorithms and corresponding simulation results are described below.

5.2.1 Residual Generation

Both actuator FDI algorithms described in this section are based on the

same residual generation mechanism. For this project, "open-loop" (see sub-

section 3.2) actuator residuals are generated by passing the commanded control

value through an actuator model to produce an estimate of the "actuator" out-

put position and subtracting this estimate from a measurement of the actuator

output. Although other residual generation mechanisms are possible (e.g.

finite memory or closed loop residuals) it is felt that this mechanism pro-

vides the best ratio between failure sensitivity and model error effects.

The actuator model (and, hence, what we mean by an actuator) is defined

by the locations of actuator commands and output measurements. Table 5-13

shows the definitions used for this project. These definitions assume that

the only input which drives each control element is computed by a digital

flight control system (DFCS) that incorporates both stability augmentation and
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TABLE 5-13. B-737 ACTUATOR DEFINITIONS

SURFACE COMMAND OUTPUT UNITS

L&R Stabilizer DFCS Command Position at Hinge degrees

L&R Elevator DFCS Command Position at Hinge degrees

Rudder DFCS Command Position at Hinge degrees

L&R Aileron DFCS Command Position at Hinge degrees

L&R Throttle DFCS Command EPR (Scaled) k-lbs

pilot inputs. Thus any failure between the DFCS output and the control mea-

surements is considered as an actuator failure. Control surface deflection

measurements are taken on the hinge (possibly using an LVDT on a control rod

or an RVDT on the hinge itself).

The estimated control value (for the "next pass") is obtained using a

generic actuator model which incorporates linear first order dynamics, rate

and position limits, and static cable stretch. The sequence of operations

used to generate the control estimate and residual for each actuator are,

Dynamics: 6k = e-_A_k-I + (l-e-_A) _c (k-l) (5-72a)

Rate Limiter: -  k-1]/A> RL M

THEN _k = _k-I + sgn(6k- _k-l) " RLIM-A (5-72b)

Cable Stretch: _k = I_ _k

1 + Q-SF

(5-72c)

Position Limit: IF (_k > Max) THEN _k = _mx

IF (_k < M_in) THEN _k = Min (5-72d)

Residual: Vk = _m(k) - _k (5-72e)
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where _m denotes the control measurement, _ denotes the estimate, Min and Max

are the position limits, Q is dynamic pressure, SF is a stretch factor, RLIM

is the rate limit, _ is the first order bandwidth and sgn is the signum func-

tion. The parameters of this model for each control element are given in

Table 5-14. The sample time, A, is .05 seconds. The elevator command and its

corresponding measurement is assumed to be given relative to the mechanical

trim while all other surface positions are relative to some body oriented

coordinate frame. For the throttle, different bandwidths are used for spool

up (6 c > _k-l) and spool down (6 c < _k-l)-

TABLE 5-14. ACTUATOR MODEL PARAMETERS

°

SURFACE _ RLIM SF MIN_ MAX UNITS

L&R Stabilizer 1.5 r/s ±I0 deg/s 0.0 -14, 3 degrees

L&R Elevator 22 r/s ±20 deg/s .0023 -I0, I0 degrees

Rudder 22 r/s ±18 deg/s 0.0 -10.3, 10.3 degrees

L&R Aileron 20 r/s ±20 deg/s .0016 -20, 20 degrees

L&R Throttle 2.0 r/s (spool up) None 0.0 (I0), (60) k-lbs

1.0 r/s (spool down)

Several error sources which result in non-zero residuals are present.

The first, and most obvious is sensor errors. These include bias and sensor

noise as detailed in Table 5-15. Scale factor errors result from errors in

SF. Errors which are excited by high frequency commands are present due to

inaccuracies in the dynamic model. Finally, rate limit errors may be present.

This last error is particularly true for the rudder in which the actual rate

limit is a nonlinear function of surface position. Also, the throttle command
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TABLE 5-15. SENSOR ERRORS

SURFACE NOISE (I-o) BIAS (MAX) UNITS

L&R Stabilizer .I .I degrees

L&R Elevator .I .I degrees

Rudder .I .I degrees

L&R Aileron .I .I degrees

L&R Throttle (.01) (.02) k-lbs

to EPR model may have scale factor errors due to uncertainty in the scaling of

both commands and EPR to thrust units (klbs).

Simulation runs using the maneuvers defined in subsection 5.1.4 were made.

Figures 5-58 to 5-66 show the residuals for each control element during the

roll doublet maneuver with no noise or failures. In these figures, the initial

blas Is removed. There are clearly many error sources besides sensor noise

present. For the ailerons and elevators errors occur mainly during the command

steps which initiate each phase of the maneuver. These errors are consistent

with dynamic inaccuracies at high frequencies. The stabilizer errors have a

lower frequency content than those of the elevators and ailerons. These errors

are also consistent with high frequency dynamic errors since the bandwidth of

the stabilizer is substantially lower. For the errors observed in the rudder

and throttle, it is likely that scale factor errors and the existence of vari-

ous nonlinearities in the simulated engine models play a large role in contrib-

uting to residual errors. For the rudder, it was discovered that nonlinear

rate limits are used in the simulation to account for varying aerodynamic loads

during surface motion. The error between this nonlinear rate limit and the

constant rate limit used in Eq. 5-72b is evident in Fig. 5-62.
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These results motivated the development of the two decision processes

discussed at the beginning of subsection 5.2. The primary focus for this

project was on test and validation of a fixed threshold algorithm for every

control element. Time permitted only preliminary investigation of the thresh-

old scheduling algorithm for the aileron controls.

5.2.2 Fixed Threshold Actuator Decision Process

A structure for a fixed threshold actuator FDI algorithm is shown in Fig.

5-67. This structure implements the trigger/verify procedure described in

Section 3 for dealing with unknown onset times. As in the aircraft-path FDI

decision process, a "prewhitening" filter which assumes that the primary error

sources are white noise and very low frequency error is employed. This filter

is a high pass filter whose cutoff frequency is determined by the length of
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time failure signatures are expected to remain constant, the length of time

expected to be needed for failure detection (trigger and verify), and the

bandwidth of the very low frequency errors. We assume that about one second

is needed for failure detection, that the failure signatures of importance are

coherent over this interval, and that the very low frequency errors have band-

widths of less than 0. i r/s. The high pass filter bandwidth is selected at

0.5 r/s (i.e., between .I r/s and i r/s). The HPF is implemented with a first

order digital filter defined by

1--(1-a)z-1 (5-73)

1-az-1

where a = e-0"5A, and where z-I is a unit delay.

The trigger process is based on the log-likelihood ratio test for distin-

guishing a bias of unknown sign in white noise from white noise.

statistic is,

The trigger
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ST(k) = _ v(k-j+l) (5-74)
j=l

The trigger design procedure is as follows. First, N is chosen as I/A times

the desired trigger delay (0.5 second --> N = i0). This choice will ensure

adequate averaging of high frequency errors while not reducing the effect of

failures. Next, the threshold is set so that the likelihood of false alarms,

during worse case errors, is small. Worst case errors, Ewc , were determined

from simulation runs using the three doublet maneuvers, and are shown for each

control in Table 5-16. If the white noise on each control measurement is 0.2

degrees (twice the allotted size in Table 5-15 for safety; this does not

impact the design a great deal), then the thresholds are selected from

to = Ewc + 3o//N (5-75)

where _ is the .2 degree noise standard deviation.

Table 5-17.

TABLE 5-16.

SURFACE

L&R Stabilizer

L&R Elevator

Rudder

L&R Aileron

L&R Throttle

WORST CASE ERRORS

The results are shown in

0.5 deg

0.75 deg

3.0 deg

0.50 deg

1.5 klbs

The verify process is based on the SPRT for the alternate hypotheses

defining the trigger test. The verify statistic is,

k k

Sv(k) = I I GV v(j) [ - I Gc
j=kf j=kf

(5-76)
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TABLE 5-17. TRIGGER THRESHOLDS

SURFACE

L&R Stabilizer 0.6 deg

L&R Elevator 0.85 deg

Rudder 3.1 deg

L&R Aileron 0.60 deg

L&R Throttle 1.6 klbs

The test is run until k = kf + NV. The time limit Nv is taken to be I0

samples (0.5 seconds). This is deemed long enough to accomplish averaging of

high frequency errors and short enough so that failure signatures are not

substantially reduced. The parameter GV is chosen as one and G c is one half

the minimally detectable failure signature, m/2. The minimally detectable

signature is taken to be twice the worst case error. Finally, the threshold

is determined so that false triggers are frequently rejected by NV/2 and

minimally detectable failures are frequently detected by NV/2. This is

accomplished by choosing the threshold as the expected value of Sv(Nv/2).

Table 5-18 shows the selected thresholds.

TABLE 5-18. VERIFY THRESHOLDS

SURFACE

L&R Stabilizer 2.5 deg

L&R Elevator 3.75 deg

Rudder 15. deg

L&R Aileron 2.5 deg

L&R Throttle 7.5 klbs
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False alarm checks were made by processing the residuals during several

maneuvers with no failures according to the decision process described above.

The three doublet maneuvers and the climbing turn maneuver with noise added to

the sensors before processing resulted in no false triggers as expected. The

climbing turn maneuver with turbulence and sensor noise resulted in false

triggers of the left and right ailerons but the verify processes were able to

reject these triggers as false in each case. The trigger and verify tests for

the left aileron are shown in Fig. 5-68.

Detection checks were then made using the climbing turn maneuver and

stuck failures (_.e., stuck at the position at the time of failure) for each

control element. Unfortunately, only runs with turbulence and sensor noise

were made. Since turbulence tends to excite the controls, the detection

performance discussed below is presumably better than that which would be

obtained without turbulence in the simulation. The failure is implemented at

5.0 seconds and the maneuver occurs at ten seconds. Table 5-19 shows the

times at which the stuck failures are triggered and verified. The label

(first) indicates that one or more false triggers were indicated by the verify

process before a trigger is verified. Throttle failures are not detected

because the deviation of the measured EPR from the estimated EPR (in klbs)

does not exceed the minimally detectable level. Only one trigger occurs for

the left throttle, but the signature is not large enough to be verified. This

is shown in Fig. 5-69. The right elevator failure is of some interest since

several triggers occur before the failure is verified. This is shown in Fig.

5-70. For the first trigger the signature is so small that the verify SPRT

passes its negative threshold. For the second trigger, the verify time limit

_s reached and the failure is identified on the third trigger.
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TABLE 5-19. TRIGGER AND VERIFY TIMES FOR STUCK CONTROLS

SURFACE TRIGGER TIME (SEC) VERIFY TIME (SEC)

Left Throttle 24.6 ---

Right Throttle None None

Left Stabilizer 11.25 11.5

Right Stabilizer 10.9 II. 1

Rudder 6.15 6.3

Left Elevator 6.05 6.3

Right Elevator 7.0 (first) 10.7

Left Aileron 5.45 (first) 6.4

Right Aileron 5.95 6. I

The fact that throttle failures were not detected must be weighed against

the severity of the failure. Inspection of the aircraft response for both

failed and unfailed cases shows that almost no performance is lost during this

maneuver when a single throttle is stuck. The difference appears in the air-

speed in which the lowest airspeed achieved during the maneuver is five knots

lower with the throttle failure. Otherwise the force and moment imbalances

resulting from the throttle failure seem to be adequately compensated by the

nominal FCS of [58].

DISCUSSION

The simulation results indicate that the actuator path FDI process

described by Fig. 5-67 can be designed to virtually eliminate false alarms

during realistic and severe maneuvers. However, the design relied on observa-

tion of the size of normal errors. Estimation or bounding of such errors is

not an easy task for real aircraft. Thus, extensive flight records may need
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to be examined to determine the size of errors. If these errors are expected

to be constant over the flight envelope and over time, and if they are small

enough (as in this study) so that important failures can be detected, then the

system described above can be made to perform adequately. Otherwise, schedul-

ing and/or adaptation mechanisms may be required.

5.2.3 Scheduled Threshold Actuator FDI Decision Process

One Of the limitations of the fixed threshold algorithm is that the

thresholds must take into account worst case error. This can sometimes limit

the sensitivity to failures during times when this error is not likely to

appear. The decision process developed here utilizes the single-input, single-

output threshold scheduling ideas developed in subsection 3.3 to adjust thresh-

olds when errors (due to dynamic model errors) are expected to be large. Time

permitted only application to the aileron actuator system. These were chosen

since the residuals suggested that dynamic errors were of greatest importance

for these actuators.

The structure for the alternate actuator decision process is shown in

Fig. 5-71. The trigger is based on the development in subsection 3.3. It is

assumed that an error filter exists whose squared magnitude bounds the (rela-

tive) frequency dependent errors in the residuals. That is, the error filter

in Fig. 5-70, £m(m), must bound E(m)/H(w) where E(_) is defined in Eq. 3-125,

and H/m) is the true actuator transfer function. The trigger equations are,

I
ST(k) - NT _(k-j+l) 2 (5-77)

j=l

tT(k ) = to + ! _T e(k-j+l) 2

NT j=1

(5-78)
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Figure 5-71. Scheduled Threshold Actuator FDI Structure

LPF = (Low Pass Filter); D T = (Constant Multiplier)

The trigger window length, NT, must be chosen as long as possible to ensure

that the impact of the approximation of Eq. 3-128 by a finite sum is not too

severe, but should not be longer than the desired FDI delay if possible.

Since the time constant of the aileron actuator model is small, NT is chosen

as i0 (0.5 sec.). This will permit substantial averaging of the high fre-

quency content in the residuals. The error filter is a first order HPF with

break frequency corresponding to the aileron actuator model bandwidth. This
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is based on the assumption that the first order actuator model is inaccurate

above its break frequency. The nominal threshold, to, is now selected only to

account for sensor noise since we assume that all model error will be

accounted for by the threshold schedules. Thus, if v(k) is white noise with

intensity of .I degrees, then the variance of ST is about .02 degrees. We

choose to as three times this or .06 degrees. Notice that this is substan-

tially smaller than the fixed threshold algorithm. Thus, very small actuator

failures can be detected during periods of quiescent operation (low frequency

actuator commands) in which the threshold offsets will be small.

The verify process is based on the assumption that the nonconstant part

of Eq. 5-78 is an estimate of the size of the residual error (due to dynamic

mismatches) at time k. This estimate is used to modify the verify thresholds

to maintain the likelihoods of error at each stage of the process as described

in subsection 3.3.

The constant KH is used to modify the high frequency gain of the error

filter. The verify statistic is defined by the constants GV and G c. As in

the trigger process GV is chosen to be one and Gc is one half of the minimally

detectable failure signature. Without errors, this signature is quite small.

We chose, however, to use 0.5 degrees as a minimally desirable failure signa-

ture since smaller signatures are deemed to be unimportant and since other

errors besides those accounted for by threshold scheduling may be present.

The nominal threshold is chosen as in subsection 5.2.1 and takes the value of

1.25.

Several experimental design iterations were made to determine a suitable

value for KH. Choosing KH so that the error filter has a high frequency gain

of I (i.e., 100% error relative to the surface estimate) resulted in no
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triggers during doublet and climbing turn maneuvers with no turbulence and

post simulation added sensor noise. False triggers (no false alarms) occurred

during the climbing turn with turbulence. Figure 5-72 shows the aileron trig-

ger for the climbing turn maneuver. The schedules seem to be conservative

(too large) but occur at the proper times. Figure 5-73 shows the same test

when turbulence is added. The large high frequency excitation of the control

surface results in errors which appear to be larger than those accounted for

with KH chosen to make the high frequency gain of the error filter equal to I.

It was determined that the high frequency gain of the error filter needed to

be ten (kH = 7) to prevent triggers during the climbing turn with turbulence.

Figure 5-74 shows the resulting trigger test. The threshold offset for this

test is frequently larger than required. Although it is believed that large

relative error is indeed possible for some frequencies, it is likely that it

is not constant over a large frequency range as in the error filter. This may

explain the over conservativeness of the test shown in Fig. 5-74. An alter-

nate method which utilizes absolute error can easily be derived (amounting to

using the actuation command instead of the estimate in the error filter) and

may produce better results.

Finally, detection checks were made using simulations of stuck actuators

during the climbing turn maneuver with turbulence and sensor noise. Although

failures are easily detected, no significant improvement in detection time

(over the fixed threshold case) was observed. Figure 5-75 shows the trigger

and verify tests for this case.

DISCUSSION

It is beieved that more work on the threshold scheduling method is needed

before meaningful conclusions can be drawn.
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SECTION 6

SUMMARY OF RESULTS AND CONCLUSIONS

This effort has developed and explored the use of a decentralized

approach to failure detection and isolation for use in restructurable control

systems. This work has produced,

I. A method for evaluating fundamental limits to FDI performance,

2. Application of this method using flight recorded data,

3. A working control element FDI system with maximal sensitivity to

critical control element failures,

4. Extensive testing of this system on realistic simulations, and

5. A detailed design methodology for this system whfch involves

parameter optimization (with respect to model uncertainties) and

sensitivity analyses.

For this project, we have concentrated on detection and isolation of generic

control element failures since these failures frequently lead to emergency

conditions and since knowledge of remaining control authority is essential for

control system redesign. The failures we considered are generic in the sense

that no temporal failure signature information was assumed. Thus, various

forms of "functional failures" are treated in a unified fashion. Such a

treatment results in a robust FDI system (i.e., one that covers all failure

modes) but sacrifices some performance when detailed failure signature infor-

mation is known, useful, and employed properly. We assumed throughout this

project that all sensors are validated (i.e., contain only in-spec errors) and

that only the first failure of a single control element needs to be detected
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and isolated. The FDI system which has been developed will handle a class of

multiple failures.

The FDI system which was developed using the design methodologies out-

lined in Section 3 worked quite well during simulation tests on data from

NASA's modified B-737 simulation. This is true despite large errors between

the models used in the FDI system and the models used in the simulation. Fur-

thermore, this system worked as predicted when errors between the simulation

model and the FDI models were within the envelope used to choose FDI parame-

ters (thresholds, etc.). The design methodology discovered the inherent

indistinguishability of same-side elevator and stabilator panels (on the basis

of force and moment imbalances alone) early in the project resulting in a sys-

tem which does not attempt to do what is impossible.

Improvements in the design methodology, system detail, and implementation

are still possible. Some over-conservatism was observed in the design proce-

dures for sequential tests. Alternative filter structures may speed up the

FDI process. The use of "probe" signals during the isolation phase would

allow enhanced isolation capability, (including the isolation of stabilizers

from elevators). And, finally, further exploration of the importance and

design of threshold schedules is needed.

The remainder of this section provides a more complete summary of this

report. It also provides a discussion of some of the unexplored alternatives

in the design, implementation, and testing of the FDI system, and suggestions

for further work.

DECENTRALIZED FDI

In Section 3 of this report, ALPHATECH's decentralized approach to FDI

was described. This approach requires an assessment of all sources of
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redundancy (including analytical redundancy) and the utilization of this

redundancy to produce decoupled or decentralized residual signals that are

then processed to produce FDI decisions. This method represents a suboptimal

approach to the data fusion problem (i.e., combining all sources of informa-

tion for decisi0nmaking purposes) under ideal circumstances (no modeling

error), but prevents the mixing of well known relationships with poorly known

relationships when modeling error exists. As a result, the decentralized

approach can be superior when significant modeling errors exist.

The first application of this idea to the control element FDI problem

resulted in a decomposition into actuator-path and aircraft-path subproblems.

Measurements of actuator inputs and outputs allowed this decomposition. The

advantage of this decomposition is that uncertainties about aerodynamic models

do not affect the ability to detect actuator path failures and uncertainties

about the actuation mechanism do not affect the detectability of aircraft path

failures. The disadvantage of this decomposition is that some configurations

of actuator output sensors may be vulnerable to failure thereby complicating

the (assumed) sensor validation process. Fortunately, however, the distinc-

tion between the alrcraft-path and the actuator-path is somewhat arbitrary so

that the aircraft path subsystem can easily be designed to detect actuator

failures when actuation outputs are not available.

The second application of decentralization is in the method of forming

aircraft-path residuals. Since only force and moment balance relationships

are affected by aircraft-path failures, residuals based on these relationships

are desired. Translational accelerometer measurements allows this to be

accomplished for the force balances, however, rotational dynamic relationships

must also be used since rotational acceleration is not measured. This method
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of formingaircraft path residuals has two advantages. The first is that

errors in other relationships which would affect centralized (Kalman filter-

like) residual generators do not affect these decentralized residuals. A

prime example is the effect of acceleration of the airmass on the transla-

tional kinematic relations. The second advantage is that control element

failures show up in fixed directions in residual space. This permits the dis-

tinguishability of alrcraft-path control element failures independent of the

detailed failure signatures. Only the relative magnitude of imbalances in

different residuals is necessary for failure isolation.

FDI SYSTEM

The structure of a generic FDI system which efficiently solves the

unknown onset time problem was developed in subsection 3.1. This structure

involved a monitoring or trigger process which is used to reject the hypothe-

sis of normal dperation and to trigger a verification and isolation process to

reject false triggers and to identify the source of a failure. This structure

is used to achieve performance advantages which approach the performance of

the known onset-time case. These advantages include greater failure sensitiv-

ity, lower false alarm rates, and shorter detection delays.

Aircraft-Path Subsystem - The aircraft-path trigger was designed to make

the probability of missing a critical failure small. Thus, each failure mode

had an explicit trigger function which is optimized for triggering under the

corresponding failure mode. Each trigger satisfies the condition that IF a

particular minimal failure occurs, THEN the corresponding trigger test will

"pass." Since the converse is not true and since false triggers are possible,

we need to perform verify and isolate tests.
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The verify and isolate tests are sequential tests and are designed so

that failures which are larger than some minimal value will be detected and

isolated in shorter time periods. If they reach a maximal time limit, no

decision is made, although it is also possible to make a fixed sample size

decision at this time.

The isolation process recognizes the fact that only the rejection of

failure modes is possible when signature information is not used. This fact

results in principle, in a matrix of isolation tests, each designed to reject

a failure mode with maximal sensitivity to another failure mode. Although

this structure appears complex, it guarantees optimal performance for every

failure mode and allows detailed analysis and optimization of each part of the

system. In practice, the off-diagonal tests in this isolation matrix were

combined for efficiency. Also, in principle, only those failure modes which

are in the "trigger-implied ambiguity group" need to be isolated, although in

practice all failures were consdiered as possible following any trigger. To

declare a failure, all isolation tests must "vote" in favor of that failure.

Actuator-Path Subsystem - The character of the actuator residuals (all actua-

tor failure directions are mutually orthogonal) resulted in one actuator-path

subsystem for each actuator failure. Thus, no isolation process was needed.

These subsystems, like the aircraft-path subsystem, also used a trigger/verify

structure to "solve" the unknown onset time problem. Two decision processes

were created and tested; a fixed threshold and a varying threshold algorithm.

The fixed threshold algorithm was designed to accommodate the observed

low frequency behavior in each residual, sensor noise, and other high frequency
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errors. The result of a trigger crossing its threshold is the initiation of a

sequential verify test. If the verify test passes, the corresponding control

element is declared as failed. If a verify fails, a "false trigger" is

declared. Because fixed thresholds were used to accommodate low frequency

errors, the sensitivity to actuator path failures was higher than originally

expected (though by no means unacceptable).

The varying threshold algorithm was based on the concept derived in

Section 3 for single-input, single-output systems with transfer function

errors. It assumed that all transfer function errors were high frequency

relative errors. Observations clearly indicated that this was not the case,

and consequently, this decision process did not perform as well as expected.

Further work in this area is needed before substantive conclusions can be

drawn.

DESIGN METHODOLOGIES

One key to the successful deployment of any FDI concept (or any aircraft

system concept for that matter) is the development of an analytical design

methodology which permits engineers to assess the impact of various contin-

gencies on performance and modify the design accordingly. In Section 3 of

this report, we have outlined the structure of such a methodology and have

given examples of how the many analysis and synthesis tasks could be per-

formed. The reason such a methodology is important is that exhaustive simula-

tion and flight testing for purposes of design is expensive and may never

encompass all contingencies of interest. An analytical design method provides

quicker and cheaper answers to the same questions and should allow all contin-

gencies to be considered.
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For the FDI problem, the contingencies of interest are the size of poten-

tial error sources and the magnitude and character of the maneuvers which

excite them. In Section 4 we demonstrated how an error budget might be formed

and utilized in the design process. This error budget serves to define a

truth model for which parameters in the FDI system (which is designed on the

basis of a design model) are optimized.

SIMULATION RESULTS

Substantial testing of both subsystems was performed using data from

NASA's B-737 simulation. These tests included drastic model mismatches

between the FDI models and the actual simulation model, sensor noise and scale

factors and turbulence. Various combinations of sensor noise and turbulence
i

were used to evaluate the impact of each on the FDI system. A total of 41

60-second simulation runs were made by NASA and data recorded for use in this

project. All runs were made using the control law of [58].

Aircraft-Path Subsystem - Three categories of simulation runs were used

to test this subsystem. These included:

I. False alarm checks with three "doublet" maneuvers and a climbing

turn. The climbing turn checks were made with no turbulence or sen-

sor noise, with sensor noise alone, and with both sensor noise and

turbulence. The doublet maneuver checks were made with no sensor

noise and no turbulence and with sensor noise and no turbulence.

Q Detection checks were made using I00 percent effectiveness failures

of all control elements except the engine (simulation capability for

this case was not available) during a climbing turn maneuver. These
checks were made with sensor noise alone--no turbulence.

. Detection checks were made for varying levels of partial effective-

ness failures for the left aileron during a climbing turn with sensor
noise and no turbulence.
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For the nine false alarm check runs which were made, no false alarm was

ever generated. No false triggers occurred during any of the three climbing

turn cases. During the two pitch doublet maneuvers triggers of the left "hor-

izontal tail" control occur, but are verified as false. During the two roll

doublet maneuvers, triggers of every control element occur, but are also veri-

fied as false.

Of the seven control elements which were failed I00 percent in the second

category of simulation runs, five were correctly isolated within two seconds

of either the failure time (for surfaces with loads in straight and level

flight) or the maneuver time. Left and right elevator failures continually

caused triggers to occur, but no unanimous decision could ever be reached dur-

ing the climbing turn maneuver. Fortunately (and as expected), the degrada-

tion in maneuver performance due to these failures is slight and they clearly

do not represent an emergency situation for the aircraft with the control law

being used. In no cases was an incorrect isolation ever made. Of course, no

attempt was made to isolate same side elevator and stabilizer controls from

each other since they were deemed indistinguishable (using force and moment

imbalances alone) during the design process. Thus correct isolation for the

stabilizers implies isolation to a fictitious horizontal tail surface. The

elevator failures which were not unanimously isolated turned out to have

signatures which were considered only marginally detectable by the design

4

methodology and thus this is an expected result.

Finally, of the five left aileron failures of varying partial effective-

ness, three were correctly isolated. It was concluded that failures of greater

magnitude than sixty percent loss could be correctly isolated during this

maneuver and of less magnitude than forty percent could not be unanimously
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isolated. The forty percent failure case caused triggers to occur and the

twenty percent case did not. Isolation times varied from less than one

second for i00 percent failures to five seconds (two triggers) for the sixty

percent failure. These results are consistent with the notion that for a

given maneuver, the signature magnitude decreases with failure severity, thus

reducing the ability to detect and isolate and increasing the length of time

needed for the sequential decision process to conclude.

No detection checks were made with turbulence, however, it would be

anticipated that due to increased excitation of controls, performance would be

equal or better to what was observed. Some experimentation with "forced iso-

late decisions" were made leading to the conclusion that, for the case tried,

such a procedure may provide significantly enhanced detection performance with

little degradation in false alarm performance. More discussion of the results

is provided at the end of subsection 5.1.

Actuator-Path Subsystem - For the fixed threshold decision algorithm

false alarm and detection of stuck-at-failure checks were made. The false

alarm checks were made using a climbing turn with sensor noise and no turbu-

lence and with both noise and turbulence and using three doublet maneuvers

with sensor noise and no turbulence. Detection checks were made using the

climbing turn with sensor noise and turbulence. Time did not permit examining

the effects of sensor noise and turbulence independently. Thus detection per-

formance as sited here is presumably better than what would be ovserved with

no turbulence.

None of the four maneuvers with noise and no turbulence produced a false

trigger. When turbulence was added during the climbing turn maneuver false
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triggers of the left and right aileron were observed, but no false alarms were

generated.

Of the nine stuck-at failures implemented, seven were correctly detected.

Only the engine failures were missed due to the lack of sufficient excitation.

Examination of the impact of missing these failures showed that little degra-

dation in performance occurred (five knot transient airspeed difference).

Failure detection times varied from 150 milliseconds to greater than three

seconds. The longer detection times were due to the fact that triggers

occurred in unloaded surfaces before the maneuver as a result of excitation

due to turbulence.

The varying threshold algorithm was also tested, however, too few results

are available to draw significant conclusions.

UNEXPLORED CONCEPTS, FURTHER WORK, AND OTHER NOTES

A list of other comments including concepts and implementatlons which

were left unexplored, some suggestions for possible algorithm improvement, and

other notes is provided below. This is in addition to the suggestions made at

the end of subsections 5.1 and 5.2.

i. In the design methodology, a more detailed truth model might be used

to alleviate some of the conservatism inherent in the current design.

This might include modeling of the pilot and the control law to

obtain more accurate statistical descriptions of the residuals. Per-

haps a continuous time domain methodology would be more useful than

the discrete models currently being used. Note, however, that these

statistical models would still assume, at least, piecewise station-

arity and that nonstationarity is a large issue which must be handled

in some fashion.

2. In the design methodology, more detailed sensitivity analyses would

be useful in demonstrating the tradeoffs associated with the design.

. Computational savings and even performance improvement may be
achieved by implementing the verify and isolate tests on a "trigger

implied ambiguity basis." The ambiguity, of course, depends not only
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on the physics of the problem, but also on the trigger design. For

example, if only the yaw residual is used to trigger rudder failures,

then a rudder trigger alone eliminates those controls which can not

excite yaw imbalances.

In the design process the notion of an FDI bandwidth arose. Failures

whose signatures lie outside this bandwidth will not be detectable.

If it were desirable to detect such failures (especially very low

frequency signatures), one might consider the design of a mmltiple

bandwidth FDI system. Such a system would have higher detectabili-

ties for failures which are outside the current bandwidth without

sacrificing the performance obtained with the current system. Of

course, the limiting case of a multiple bandwidth system would be a

concept involving Fourier transforms and statistics and thresholds

for combinations of frequency elements.

In the evaluation of fundamental limits to FDI performance, it would

be useful to process more segments of flight data and to average the

results. Use of other spectral estimation methods might also be

useful, particularly the perlodogram approach (i.e., taking averages

of DFT's). These may be explored in subsequent work.

One dissapointment of the current work was the need to rely on

observed data in the design process. Studies relating to the crea-

tion of more accurate error budgets need to be accomplished in order

for the design methodology to be maximally useful.
•r'

A reduction in computational requirements for the aircraft path algo-

rithm might be achieved by a system which performed only a single

rejection test for each control element. Such a system would, of

course, sacrifice sensitivity to failures. However, this approach

might be tried first and evaluated to see where specific sensitivi-

ties need to be enhanced. The system concepts developed in this work

could then be applied only where increased sensitivity was needed.

Relaxation of sensor validity assumptions is an important future

effort. To detect sensor and control element failures, additional

redundancy relations are needed. The work of Deckert, et al., [16]

provides an excellent starting point since it was used as a basis for

the approach developed in this work. Reliability issues also need to

be addressed in this context to ensure that the tradeoff between

hardware and analytic redundancy is made properly.

The actuator models used in this work required a substantial amount

of detail (scale factors, rate limits, etc.). The most significant
detail seems to have been rate limits since errors due to incorrect

rate limits can affect both low and high frequency behavior.

For the varying threshold actuator decision process, improved

performance may be possible if bounds on the absolute error (rather

than the relative error) are used to schedule thresholds.
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APPENDIX A

DERIVATION OF AERODYNAMIC COEFFICIENTS FROM LINEAR MODELS

Assume that the linear perturbation model was derived through a first

order Taylor expansion of Euler's equations. That is, the linear model

x =Ax + Bu (A-l)

represents the dynamic perturbations from nominal values x0 and u0, derived by

a linearization of the nonlinear rigid body equations. The state vector x is

(U, V, W, P, Q, R) and the control vector u is composed of the "deflections,"

_i (including throttle). Equation A-I was derived from a linearization of the

following equations.

m(U + WQ - RV) = X

m(V + UR - PW) = Y

m(W+VI'- QU) = Z

IxP + (Iz - Iy)RQ = L

lyQ + (Ix - Iz)PR = M

IzR + (ly - Ix)QP = N

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)
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The forces and moments (X Y Z L M N) were expressed in Eqs. 5-7 through

5-18 in terms of a measurement vector, yT = (VT, =, B, P, Q, R) and the

nondimensional coefficient which we wish to solve for.

can be rewritten,

= f(y, _ ; C)

Thus, Eqs. A-2 to A-7

(A-8)

where C is a vector of nondimensional coefficients. Since y is a function of

x the partial derivatives _j I XoUo

i
and

fXUUo
can be obtained as a func-

tion of C (Note: m _ )e

_xj _yj _xj

These partials are then assigned to the

numerical values specified by the A & B matrices in Eq. A-I and the coeffi-

cients C found.

In particular, if we assume that V T is constant, then the solution for C

is unique and is given below.

Stability Terms:

r,_0, (_
CX_ = m[_) (-V T sin _ cos 8) + -_ + Q) V T cos a cos B]/QS

,_
CXQ = m_+ W) 2V T / c QS)

CyB L._ + R) (-V T cos _ sin B) + i_) V T cos B + -_ - P)

(-V T sin = sin B)] / Q--S

c_
Cyp =._- W) (2V T / bQS)

._
CyR =_+ U) (2V T / DQS)

(A-9)

(A-t0)

(A-tZ)

(A-12)

(A-13)
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CZ_ = [t_- Q) (-VT sin _ cos B) + ( ) VT cos _ cos B] / qs

,a_
CZQ = mK_- U) (2V T / cQS)

CLB x[_) (-VT cos a sin B) + _-_) VT cos B + _)

(-V T sin = sin B)] / QSb

= z ca_'"
CLp x,_) (2VT / b2Q s)

rz ca},
CLR = L X,'_J + (Zz - ly) Q] (2V T / b_s)

CM_ = ly[(_) (-V T sin e cos B) + "aWC_-_)VT cos = cos B] / QS7

CMQ = ly(_Q) (2V T / _2QS)

CN_ _.[C_" _a_ (_"= ._ (-VT cos _ sin B) + ._f. VT cos B + -_)

(-V T sin = sin 6)] / QSb

= z_a },-
CNp [ z,_) + (ly- Ix ) Q] (2V T / b_S)

CNR = [Iz(_) (2VT / b2QS)

Control Terms:

Cx6i = m_- i) / QS

Cy_ i = m_i) / QS

,a_

Cz8 i = m_i) / QS
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(A-15)

(A-16)

(A-17)

(A-ZS)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

(A-25)

(A-26)
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= I c_P --
CL6 i x,_i) / QSb (A-27)

= _ ) / QSc (A-28)CM6 i ly( i

CN6 i = Izt_i) / QSB (A-29)

In the above, y and u are evaluated at their nominal values and the partials

are obtained from the values of matrices in the linear model• This method

ignores contributions to forces and moments due to = and assumes that VT is

constant• Relaxation of these assumptions is possible, but the solution pro-

cedure is more difficult.

Two flight conditions were evaluated using this method• The constant

coefficients (basic lift, drag, etc.) are determined by ensuring that x = 0.

Notice that the nondimensional coefficients at the two flight conditions are

substantially different• This is most likely due to large control nonlineari-

ties and the effect of flap deflection on basic aircraft characteristics and

on horizontal tail nonlinearities.

FCI is defined by:

V = 160 KIAS

h = 3500 feet

G = 0 (Gear Up)

Flaps = 15°
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FC2 is defiaed by:

V = 140 KIAS

h = 1500 feet

G = I (Gear Down)

Flaps = 30 °

Other assumptions

S = wing area = I000 ft 2

b = wing span = I00 ft

c = average chord = I0 ft

m

The resulting coefficients are shown below in Table A-I.
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TABLE A- I.

FCI

CXB

0.11159E+01 ALPH

0.33830E-01 Q

0.I1541E-01 THRUST L

0.I1541E-O1 THRUST R

0.71224E-03 D STAB L

0.71224E-03 D STAB R

0.O0000E+O0 D RUDDER

0.33401E-03 D ELEV L

0.33401E-03 D ELEV R

0.38211E-03 D AILE L

0.38211E-03 D AILE R

-.61064E-03 D SPLR L

-.61064E-03 D SPLR R

-. 91344E-O1 K

CYB

-. 12764E+01 BETA
O. 14274E+00 P

O. 40748E+00 R

0.00000E+O0 THRUST L

0.O0000E+O0 THRUST R

0.O0000E+O0 D STAB L

O.00000E+O0 D STAB R

0.68085E-02 D RUDDER

O.O0000E+O0 D ELEV L

O.O0000E+O0 D ELEV R

0.60524E-04 D AILE L

-.60524E-04 D AILE R

0.62347E-03 D SPLR L

-.62347E-03 D SPLR R

-.54122E-15 K

CZB

-.69370E+01 ALPH

-.38821E+00 Q
-.16000E-04 THRUST L

-.16000E-04 THRUST R

-.83883E-02 D STAB L

-.83883E-02 D STAB R

-O.O000E+O0 D RUDDER

-.39325E-02 D ELEV L

-.39325E-02 D ELEV R

-.44963E-02 D AILE L

-.44963E-02 D AILE R

0.44794E-02 D SPLR L

0.44794E-02 D SPLR R

-. 52182E+00 K

NONDIMENSIONAL COEFFICIENTS

CXB

FC2

0.12661E+01ALPH

0.26276E-01Q
0.15070E-01 THRUST L

0.15070E-01 THRUST R

0.52730E-03 D STAB L

0.52730E-03 D STAB R

O.00000E+00 D RUDDER

0.25056E-03 D ELEV L

0.25056E-03 D ELEV R

0.28252E-03 D AILE L

0.28252E-03 D AILE R

-.70234E-03 D SPLR L

-.70234E-03 D SPLR R

-.16288E+00 K

CYB

-.13282E+01 BETA

0.27300E+00 P

0.30631E+00 R

O.00000E+00 THRUST L

O.00000E+00 THRUST R

0.00000E+00 D STAB L

O.00000E+00 D STAB R

0.68867E-02 D RUDDER

O.O0000E+00 D ELEV L

O.O0000E+00 D ELEV R

0.44354E-04 D AILE L

-.44354E-04 D--AILE--R

0.85356E-03 D SPLR L

-.85356E-03 D SPLR R

-.55180E-15 K

CZB

-.74416E+01ALPH

-.42188E+00 Q
-.16445E-04 THRUST L

-.16445E-04 THRUST R

-.84034E-02 D STAB L

-.84034E-02 D STAB R

O.00000E+00 D RUDDER

-.39927E-02 D ELEV L

-.39927E-02 D ELEV R

-.45015E-02 D AILE L

-.45015E-02 D AILE R

0.60711E-02 D SPLR L

0.60711E-02 D SPLR R

-.10091E+01K
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TABLE A-1.

FCI

CLB

-.24436E+00 BETA

-.58055E+00 P

0.20669E+00 R

0.I0871E-03 THRUST L

-.I0871E-03 THRUST R

0.61458E-03 D STAB L

-.61458E-03 D STAB R

0.75713E-03 D RUDDER

0.2874!E-03 D ELEV L

-.28741E-03 D ELEV R

0.61045E-03 D AILE L

-.61045E-03 D AILE R

-.70755E-03 D SPLR L

0.70755E-0E D SPLR R

-.I0716E-15 K

CMB

-.17373E+01ALPH

-.33986E+02 Q
0.57743E-02 THRUST L

0.57743E-02 THRUST R

-.33534E-01 D STAB L

-.33534E-01 D STAB R

0.00000E+O0 D RUDDER

-.15602E-01 D ELEV L

-.15602E-01 D ELEV R

-.44041E-02 D AILE L

-.44041E-02 D AILE R

0.18332E-02 D SPLR L

0.18332E-02 D SPLR R

-.90779E-02 K

CNB

0.13662E+00 BETA

-.13149E+00 P

-.14715E+00 R

0.18818E-02 THRUST L

-.18818E-02 THRUST R

0.13354E-03 D STAB L

-.13354E-03 D STAB R

-.26346E-02 D RUDDER

0.76452E-04 D ELEV L

-.76452E-04 D ELEV R

0.14500E-03 D AILE L

-.14500E-03 D AILE R

-.35808E-03 D SPLR L

0.35808E-03 D SPLR R

0.17944E-15 K

NONDIMENSIONAL COEFFICIENTS (Continued)
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FC2

CLB

-.27875E+00 BETA

-.57419E+00 P

0.25012E+00 R

0.14199E-03 THRUST L

-.14199E-03 THRUST R

0.61540E-03 D STAB L

-.61540E-03 D STAB R

0.76630E-03 D RUDDER

0.29215E-03 D ELEV L

-.29215E-03 D ELEV-R

0.63462E-03 D AXLE L

-.63462E-03 D AXLE R

-.96394E-03 D SPLR L

0.96394E-03 D SPLR R

-.I0434E-15 K

CMB

-.24619E+01 ALPH

-.33929E+02 Q
0.75395E-02 THRUST L

0.75395E_02 THRUST--R

-.33518E-01 D STAB L

-.33518E-01 D STAB R

O.00000E+00 D RUDDER

-.15877E-01 D ELEV L

-.15877E-01 D ELEV R

-.43994E-02 D AILE L

-.43994E-02 D AILE R

0.23797E-02 D SPLR L

0.23797E-02 D SPLR R

-.12474E+00 K

CNB

0.14165E+00 BETA

-.13610E+00 P

-.15230E+00 R

0.24579E-02 THRUST L

-.24579E-02 THRUST R

0.12025E-03 D STAB L

-.12025E-03 D STAB R

-.26849E-02 D RUDDER

-.70973E-04 D ELEV L

0.70973E-04 D ELEV R

0.15758E-03 D AILE L

-.15758E-03 D AILE R

-.45348E-03 D SPLR L

0.45348E-03 D SPLR R

0.20830E-15 K
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APPENDIX B

DERIVATION OF OVERALL ERROR RATE EXPRESSIONS

This appendix derives expressions for overall system error probabilities

for the aircraft path FDI system. These probabilities are based on the indi-

vidual error probabilities of the hypothesis tests which are performed. First

we define some fundamental events.

Let,

T i = event of the ith trigger indicating possible failure (B-I)

V i = event of the ith verify test choosing Hi over Ho (B-2)

ll/j = event of the i, jth isolation test choosing H i over

Hj (B-3 )

i,j, = I, ..., 7 (i.e., seven control element failures)

Also, we define the aggregate events,

r _

7

U Ti = the event that some trigger indicates

i=l failure (B-4)

7

V = U vi = the event that some verify chooses Hi

i=l over Ho (B-5)

d i = TOV i N li/j = the event that failure i is
j¢i declared (B-6)

The relevant probabilities which we wish to calculate are,
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PFA = probability of choosing any failure mode i when
there is no failure (B-7)

PFC = probability of choosing H i when Hj is true (B-8)

In order to compute the above, several intermediate probabilities are

needed.

The probability of false trigger, PFT, is the probability that T is true

when there is no failure. Using Eq. B-4, we have

7

T = N Ti (B-9)
i=l

and

PCR = P(_[Ho) = P(TI[Ho )7 = [I-P(Ti[Ho)] 7 (B-10)

assuming independent tests. Finally, PFT = I-PCR.

Similarly, the probability of false verification, PFV, is the probability

that V is true under Ho and is computed from

PFV = P(VIHo = I-[I-P(VilHo)] 7 (B-If)

again assuming independent tests.

In the following, the a priori probabilities of each failure mode are

assumed to be equal, and all tests are assume to be independent.

The false alarm probability, PFA, is given by

PFA = P[ U di[Hol (B-12)
i_0
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Since the events, di, are disjoint,

PFA = _ P(dilHo)
i

= _ PFT " P(VilHo) " n P(Ii/jlHo) (B-13)

i j=1

Assuming that P(VilH o) is the same for all i and P(Ii/jlHo) is the same for

all j, we have

PFA = 7 PFT " P(VIIHo " P(Ii/jlHo )6 (B-14)

Assuming that choosing H i over Hi, l_j_o, when H o is true is completely

random, i.e., P(II/jlH o) ffi1/2, we have,

7 • P(VilHo)PFA <-6-_ " PFT
(B-15)

The probability of false classification, PFC, is computed from

PFC = I-Pcc where

= P _ U di N H iPCC

{i_O

(B-16)

Using Bayes rule and the fact that the events di N H i are disjoint, Eq. B-16

can be rewritten,

PCC = _.P(dj[Hj) • P(Hj[ [3 Hj) (B-17)

j j_-0

or when all of the a priori probabilities are equal,

7
i

= _ [ P(dj IHj )PCC
j=l

(B-18)
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Now using Eq. B-6, the fact that each V i and ll/j event is a subset of T,

each test is independent, and the assumption that the individual test proba-

bilities are equal for each failure mode, we have

PCC = P(T[Hi) P(VilHi) " P(Ii/jlHi )6 (B-19)

• P(TilH i) P(VilH i) P(Ii/jlHi )6 (B-20)

Example

Suppose e(TilHi) = P(Tilao) = P(VilHo) = P(Vilai) = P(Ii/jlHj,j,i ) = 10-_.

Then we have,

PFT < 10-3

PFA < 10-8

PFC < 10-3

The false alarm spec, if expressed as 1 in 108 samples, represents better than

1 in 800 hours of flight time for a .03 second sample interval.
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APPENDIX C

FLIGHT DATA PROCESSING DETAILS

The flight data values used by the Failure Detection and Isolation system

are derived by converting the flight data of the tape Into the required

formats, by use of two external programs, CRUNCH and CONFIG. CRUNCH inputs

the ASCII data and converts it Into a binary, sequential file. CONFIG then

converts the binary data into FDI required values and outputs them into

another binary, sequential file. The conversions are as follows:

I. converts velocity from knots to feet/sec

2. computes the yaw rate by taking the mean of the two intermediate

values from four sensor readings

3. the left and right thrust are computed from throttle positions based

on a flrst-order system

a. first, the previous thrust value is initialized

prey left_thrust = .298 * left__throttle__pos

prev__right_thrust = .298 * right throttle__pos

b. then, for every time step:

average throttle = (left__throttle__pos + right throttle__pos)/2

left thrust = exp(-0.5 * delta time)*prev left-thrust + (exp(-0.5

• delta time)-l)_-2*.298*left throttle

prey left__thrust = left_thrust

right-thrust = exp(-0.5*delta__time)*prev__right_thrust + (exp(-0.5

• delta__time)-l)_-2).298*right throttle

prev_right__thrust = right thrust

4. invert normal acceleration measurement so that it is consistent with

residual generation definition
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5. compute stabilizer position from pilot units

stab = 3 - pilot_unit

6. correct rudder for bias in measurement

rudder = rudder - 5.6

7. make the aileron measurements complementary of each other

left aileron = - left aileron

rlght_aileron = right_aileron

8. compute spoiler positions

left_spoiler = (left_spoill + left__spoil2)/2

rlght_spoiler = (rlght__spoill + right_spoil2)/2

All other input values are channeled to the output file untouched. In

addition, this program initializes the variable QBAR (dynamic pressure) to

zero so that it can be computed in FDI. The output file is headed by an

integer indicating the number of channels in the output file. This is

followed by the channels themselves, listed by vectors of time. The first

nine measured surface deflections are repeated at the end to serve as dummy

A list of the output file channels is givencommanded deflection values.

below:

0 TIME

I VT

2 ALPHA

3 BETA

4 P

5 Q

6 R

7 AX

8 AY

9 AZ

I0 QBAR

II ALTITUDE
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measured values:

commanded values:

12 LEFT THRUST

13 RIGHT THRUST

14 STABILIZER

15 STABILIZER

16 RUDDER

17 LEFT ELEVATOR

18 RIGHT ELEVATOR

19 LEFT AILERON

20 RIGHT AILERON

21 LEFT SPOILER

22 RIGHT SPOILER

23 LEFT THRUST

24 RIGHT THRUST

25 STABILIZER

26 STABILIZER

27 RUDDER

28 LEFT ELEVATOR

29 RIGHT ELEVATOR
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